BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2109668)

  • 41. [Regulation of the blood water-saline composition in the frog Rana ridibunda during intravenous administration of hypertonic solutions of sodium chloride].
    Goncharevskaia OA; Monin IuG
    Zh Obshch Biol; 1983; 44(4):547-52. PubMed ID: 6637091
    [No Abstract]   [Full Text] [Related]  

  • 42. NADPH production by the pentose phosphate pathway in the zona fasciculata of rat adrenal gland.
    Frederiks WM; Kümmerlin IP; Bosch KS; Vreeling-Sindelárová H; Jonker A; Van Noorden CJ
    J Histochem Cytochem; 2007 Sep; 55(9):975-80. PubMed ID: 17533217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.
    Smith JR; Kay NE; Gottlieb AJ; Oski FA
    Am J Hematol; 1979; 6(4):313-21. PubMed ID: 43670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship of the hexose monophosphate shunt to the endogenous metabolism of cell-free extracts of Mycobacterium phlei.
    SUTTON WB
    J Bacteriol; 1963 Feb; 85(2):476-84. PubMed ID: 13979428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quinone induced stimulation of hexose monophosphate shunt activity in the guinea pig lens: role of zeta-crystallin.
    Rao P; Zigler JS
    Biochim Biophys Acta; 1992 Mar; 1116(1):75-81. PubMed ID: 1540627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Menadione-induced oxidative stress in hepatocytes isolated from fed and fasted rats: the role of NADPH-regenerating pathways.
    Smith PF; Alberts DW; Rush GF
    Toxicol Appl Pharmacol; 1987 Jun; 89(2):190-201. PubMed ID: 3603556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hexose monophosphate shunt activities in human erythrocytes during oxidative damage induced by hydrogen peroxide.
    Guitton J; Servanin S; Francina A
    Arch Toxicol; 2003 Jul; 77(7):410-7. PubMed ID: 12851742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation.
    Mareni C; Gaetani GF
    Biochim Biophys Acta; 1976 Jun; 430(3):395-8. PubMed ID: 7294
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1975 Aug; 396(2):260-75. PubMed ID: 239745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate utilization by Rana ridibunda erythrocytes.
    Kaloyianni M; Moutou K
    Comp Biochem Physiol Biochem Mol Biol; 1994 Jul; 108(3):357-66. PubMed ID: 8081659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pentose cycle (hexose monophosphate shunt). Rigorous evaluation of limits to the flux from glucose using 14CO2 data, with applications to peripheral ganglia of chicken embryos.
    Larrabee MG
    J Biol Chem; 1989 Sep; 264(27):15875-9. PubMed ID: 2506171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pulmonary and hepatic fatty acid synthesis. III. Control of hexose monophosphate shunt pathway by 3,5,3'-L-triiodothyronine.
    Das DK; Neogi A
    Ann Nutr Metab; 1984; 28(6):357-66. PubMed ID: 6517528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane characteristics and metabolic properties of glucose-6-phosphate dehydrogenase deficient red cells.
    Jansson SE; Hekali R; Gripenberg J; Härkönen M; Vuopio P
    Br J Haematol; 1980 Sep; 46(1):79-87. PubMed ID: 6252945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The synthesis of N-benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.
    Bayindir S; Temel Y; Ayna A; Ciftci M
    J Biochem Mol Toxicol; 2018 Sep; 32(9):e22193. PubMed ID: 29992784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of two HMP shunt pathway enzymes by fatty acids and their CoA esters in developing human brain: role of fatty acid binding protein.
    Mukhopadhyay D; Mukherjea M
    Indian J Biochem Biophys; 1994 Dec; 31(6):464-8. PubMed ID: 7875715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variable expression of isotopic discrimination in metabolic flows.
    Malaisse WJ; Malaisse-Lagae F; Sener A
    Diabetes Res; 1991 Jun; 17(2):51-65. PubMed ID: 1817812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man.
    Albrecht V; Roigas H; Schultze M; Jacobasch G; Rapoport S
    Eur J Biochem; 1971 May; 20(1):44-50. PubMed ID: 4397083
    [No Abstract]   [Full Text] [Related]  

  • 60. Purification, catalytic and regulatory properties of Rana ridibunda erythrocyte pyruvate kinase.
    Kaloyianni-Dimitriades MG; Beis ID
    Comp Biochem Physiol B; 1984; 79(2):245-50. PubMed ID: 6509916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.