These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21096685)

  • 1. Preliminary characterization of a glucose-sensitive hydrogel.
    Beier BL; Brandner EM; Musick KM; Matsumoto A; Panitch A; Nauman EA; Irazoqui PP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5014-7. PubMed ID: 21096685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a continuous intravascular glucose monitoring system.
    Beier B; Musick K; Matsumoto A; Panitch A; Nauman E; Irazoqui P
    Sensors (Basel); 2011; 11(1):409-24. PubMed ID: 22344366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ; Pishko MV; Gefrides CC; McShane MJ; Coté GL
    Anal Chem; 1999 Aug; 71(15):3126-32. PubMed ID: 10450158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics.
    Brandl F; Kastner F; Gschwind RM; Blunk T; Tessmar J; Göpferich A
    J Control Release; 2010 Mar; 142(2):221-8. PubMed ID: 19887092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A smart hydrogel system for visual detection of glucose.
    Wu M; Zhang Y; Liu Q; Huang H; Wang X; Shi Z; Li Y; Liu S; Xue L; Lei Y
    Biosens Bioelectron; 2019 Oct; 142():111547. PubMed ID: 31387025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels.
    Richbourg NR; Peppas NA
    Macromolecules; 2021 Nov; 54(22):10477-10486. PubMed ID: 35601759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo.
    Tierney S; Falch BM; Hjelme DR; Stokke BT
    Anal Chem; 2009 May; 81(9):3630-6. PubMed ID: 19323502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite Hydrogels with Engineered Microdomains for Optical Glucose Sensing at Low Oxygen Conditions.
    Bornhoeft LR; Biswas A; McShane MJ
    Biosensors (Basel); 2017 Jan; 7(1):. PubMed ID: 28117762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin hydrogel films for rapid optical biosensing.
    Zhang X; Guan Y; Zhang Y
    Biomacromolecules; 2012 Jan; 13(1):92-7. PubMed ID: 22136353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporated PEG spheres for fluorescent analyte detection.
    Rounds RM; Ibey BL; Beier HT; Pishko MV; Coté GL
    J Fluoresc; 2007 Jan; 17(1):57-63. PubMed ID: 17111227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and characterization of glucose-sensitive hydrogel: effect of Young's modulus.
    Li H; Luo R
    Biosens Bioelectron; 2009 Aug; 24(12):3630-6. PubMed ID: 19523807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedimetric transduction of swelling in pH-responsive hydrogels.
    Mac Kenna N; Calvert P; Morrin A
    Analyst; 2015 May; 140(9):3003-11. PubMed ID: 25768307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically reactive supramolecular hydrogel coupled with a signal amplification system for enhanced analyte sensitivity.
    Yoshii T; Onogi S; Shigemitsu H; Hamachi I
    J Am Chem Soc; 2015 Mar; 137(9):3360-5. PubMed ID: 25679407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reusable optical bioassay platform with permeability-controlled hydrogel pads for selective saccharide detection.
    Cheung KY; Mak WC; Trau D
    Anal Chim Acta; 2008 Jan; 607(2):204-10. PubMed ID: 18190809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
    Orthner MP; Lin G; Avula M; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators B Chem; 2010 Mar; 145(2):807-816. PubMed ID: 23750073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Injectable PEG-BSA-Coumarin-GOx Hydrogel for Fluorescence Turn-on Glucose Detection.
    Srinivasan G; Chen J; Parisi J; Brückner C; Yao X; Lei Y
    Appl Biochem Biotechnol; 2015 Nov; 177(5):1115-26. PubMed ID: 26288081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.