These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21096685)

  • 21. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics.
    Gamsey S; Suri JT; Wessling RA; Singaram B
    Langmuir; 2006 Oct; 22(21):9067-74. PubMed ID: 17014156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Balance between Coulombic interactions and physical confinement in silica hydrogel encapsulation.
    Zhou Y; Yip WT
    J Phys Chem B; 2009 Apr; 113(17):5720-7. PubMed ID: 19344099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constant-volume hydrogel osmometer: a new device concept for miniature biosensors.
    Han IS; Han MH; Kim J; Lew S; Lee YJ; Horkay F; Magda JJ
    Biomacromolecules; 2002; 3(6):1271-5. PubMed ID: 12425665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of chemically induced pressure generation of hydrogels under isochoric conditions using a microfabricated device.
    Herber S; Eijkel J; Olthuis W; Bergveld P; van den Berg A
    J Chem Phys; 2004 Aug; 121(6):2746-51. PubMed ID: 15281877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained intravesical drug delivery using thermosensitive hydrogel.
    Tyagi P; Li Z; Chancellor M; De Groat WC; Yoshimura N; Huang L
    Pharm Res; 2004 May; 21(5):832-7. PubMed ID: 15180342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel enzymatic technique for limiting drug mobility in a hydrogel matrix.
    Burke MD; Park JO; Srinivasarao M; Khan SA
    J Control Release; 2005 May; 104(1):141-53. PubMed ID: 15866341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing glucose and oxygen diffusion in hydrogels for the rational design of 3D stem cell scaffolds in regenerative medicine.
    Figueiredo L; Pace R; D'Arros C; Réthoré G; Guicheux J; Le Visage C; Weiss P
    J Tissue Eng Regen Med; 2018 May; 12(5):1238-1246. PubMed ID: 29489057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery.
    Cai B; Luo Y; Guo Q; Zhang X; Wu Z
    Carbohydr Res; 2017 Jun; 445():32-39. PubMed ID: 28395252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast responsive crystalline colloidal array photonic crystal glucose sensors.
    Ben-Moshe M; Alexeev VL; Asher SA
    Anal Chem; 2006 Jul; 78(14):5149-57. PubMed ID: 16841941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects.
    Galgoczy R; Pastor I; Colom A; Giménez A; Mas F; Alcaraz J
    Colloids Surf B Biointerfaces; 2014 Aug; 120():200-7. PubMed ID: 24916283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures.
    Zhai D; Liu B; Shi Y; Pan L; Wang Y; Li W; Zhang R; Yu G
    ACS Nano; 2013 Apr; 7(4):3540-6. PubMed ID: 23472636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase.
    Kang SI; Bae YH
    J Control Release; 2003 Jan; 86(1):115-21. PubMed ID: 12490377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform.
    Tierney S; Volden S; Stokke BT
    Biosens Bioelectron; 2009 Mar; 24(7):2034-9. PubMed ID: 19062267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distance and Color Change Based Hydrogel Sensor for Visual Quantitative Determination of Buffer Concentrations.
    Wang R; Du X; Zhai J; Xie X
    ACS Sens; 2019 Apr; 4(4):1017-1022. PubMed ID: 30895782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response.
    Lee YJ; Pruzinsky SA; Braun PV
    Langmuir; 2004 Apr; 20(8):3096-106. PubMed ID: 15875835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents.
    Zhang C; Cano GG; Braun PV
    Adv Mater; 2014 Aug; 26(32):5678-83. PubMed ID: 25042106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.
    Daikuzono CM; Delaney C; Tesfay H; Florea L; Oliveira ON; Morrin A; Diamond D
    Analyst; 2017 Mar; 142(7):1133-1139. PubMed ID: 28300229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings.
    Wang J; Banerji S; Menegazzo N; Peng W; Zou Q; Booksh KS
    Talanta; 2011 Oct; 86():133-41. PubMed ID: 22063522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-invasive tracking of hydrogel degradation using upconversion nanoparticles.
    Dong Y; Jin G; Ji C; He R; Lin M; Zhao X; Li A; Lu TJ; Xu F
    Acta Biomater; 2017 Jun; 55():410-419. PubMed ID: 28428038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.