These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21096741)

  • 1. Combining ENG and EEG integrated analysis for better sensitivity and specificity of neuroprosthesis operations.
    Rossini L; Rossini PM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():134-7. PubMed ID: 21096741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards natural non-invasive hand neuroprostheses for daily living.
    Tavella M; Leeb R; Rupp R; Millan Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():126-9. PubMed ID: 21096523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
    Tombini M; Rigosa J; Zappasodi F; Porcaro C; Citi L; Carpaneto J; Rossini PM; Micera S
    Neurorehabil Neural Repair; 2012; 26(3):275-81. PubMed ID: 21730360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG.
    Lew E; Chavarriaga R; Zhang H; Seeck M; Millan Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3280-3. PubMed ID: 23366626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG-TMS co-registration study on a human amputee.
    Ferreri F; Ponzo D; Vollero L; Guerra A; Di Pino G; Petrichella S; Benvenuto A; Tombini M; Rossini L; Denaro L; Micera S; Iannello G; Guglielmelli E; Denaro V; Rossini PM
    Restor Neurol Neurosci; 2014; 32(2):281-92. PubMed ID: 24177253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activities on PNS neural interfaces for the control of hand prostheses.
    Carpaneto J; Cutrone A; Bossi S; Sergi P; Citi L; Rigosa J; Rossini PM; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4637-40. PubMed ID: 22255371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
    Wolpaw JR; McFarland DJ
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17849-54. PubMed ID: 15585584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of reaching intention using EEG signals and nonlinear dynamic system identification.
    Mirzaee MS; Moghimi S
    Comput Methods Programs Biomed; 2019 Jul; 175():151-161. PubMed ID: 31104704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
    Gudiño-Mendoza B; Sanchez-Ante G; Antelis JM
    Comput Math Methods Med; 2016; 2016():3195373. PubMed ID: 27217826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution.
    Bulea TC; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Front Neurosci; 2014; 8():376. PubMed ID: 25505377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on directional information in neural signals for brain-machine interfaces.
    Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C
    J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurobionics and the brain-computer interface: current applications and future horizons.
    Rosenfeld JV; Wong YT
    Med J Aust; 2017 May; 206(8):363-368. PubMed ID: 28446119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neurally-interfaced hand prosthesis tuned inter-hemispheric communication.
    Di Pino G; Porcaro C; Tombini M; Assenza G; Pellegrino G; Tecchio F; Rossini PM
    Restor Neurol Neurosci; 2012; 30(5):407-18. PubMed ID: 22751356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes.
    Citi L; Carpaneto J; Yoshida K; Hoffmann KP; Koch KP; Dario P; Micera S
    J Neurosci Methods; 2008 Jul; 172(2):294-302. PubMed ID: 18534683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis.
    Rashid N; Iqbal J; Javed A; Tiwana MI; Khan US
    Biomed Res Int; 2018; 2018():2695106. PubMed ID: 29888252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural signal recording and processing in somatic neuroprosthetic applications. A review.
    Raspopovic S; Cimolato A; Panarese A; Vallone F; Del Valle J; Micera S; Navarro X
    J Neurosci Methods; 2020 May; 337():108653. PubMed ID: 32114143
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.