BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21096798)

  • 1. Pilot study on verification of effectiveness on operability of assistance system for robotic tele-surgery using simulation.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2308-12. PubMed ID: 21096798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operability evaluation using an simulation system for gripping motion in robotic tele-surgery.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5106-9. PubMed ID: 19963881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient force feedback transmission system for tele surgery.
    Natarajan S; Ganz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3245-8. PubMed ID: 19163399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery.
    Anvari M; Broderick T; Stein H; Chapman T; Ghodoussi M; Birch DW; McKinley C; Trudeau P; Dutta S; Goldsmith CH
    Comput Aided Surg; 2005 Mar; 10(2):93-9. PubMed ID: 16298920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Robotics in general surgery: personal experience, critical analysis and prospectives].
    Fracastoro G; Borzellino G; Castelli A; Fiorini P
    Chir Ital; 2005; 57(6):687-93. PubMed ID: 16400762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay--pilot study.
    Lum MJ; Rosen J; Lendvay TS; Wright AS; Sinanan MN; Hannaford B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5597-600. PubMed ID: 19163986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early experience of tele-robotic surgery in children.
    Najmaldin A; Antao B
    Int J Med Robot; 2007 Sep; 3(3):199-202. PubMed ID: 17924450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical evaluation of robotic tele-cholecystectomy: a randomized single-blind controlled pilot study.
    Ebihara Y; Hirano S; Takano H; Kanno T; Kawashima K; Morohashi H; Oki E; Hakamada K; Urushidani S; Mori M
    J Robot Surg; 2023 Jun; 17(3):1105-1111. PubMed ID: 36602754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid event based control architecture for tele-robotic systems controlled through Internet.
    Li XM; Yang CJ; Chen Y; Hu XD
    J Zhejiang Univ Sci; 2004 Mar; 5(3):296-302. PubMed ID: 14727305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-D robotic tele-surgery and training over next generation wireless networks.
    Martini MG; Hewage CT; Nasralla MM; Smith R; Jourdan I; Rockall T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6244-7. PubMed ID: 24111167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrity mechanism for eHealth tele-monitoring system in smart home environment.
    Mantas G; Lymberopoulos D; Komninos N
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3509-12. PubMed ID: 19964802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tele-operated mobile ultrasound scanner using a light-weight robot.
    Delgorge C; Courrèges F; Al Bassit L; Novales C; Rosenberger C; Smith-Guerin N; Brù C; Gilabert R; Vannoni M; Poisson G; Vieyres P
    IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):50-8. PubMed ID: 15787007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new minimally invasive heart surgery instrument for atrial fibrillation treatment: first in vitro and animal tests.
    Abadie J; Faure A; Chaillet N; Rougeot P; Beaufort D; Goldstein JP; Finlay PA; Bogaerts G
    Int J Med Robot; 2006 Jun; 2(2):188-96. PubMed ID: 17520630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tele-3-dimensional computer-assisted functional endoscopic sinus surgery: new dimension in the surgery of the nose and paranasal sinuses.
    Klapan I; Simicić L; Risavi R; Besenski N; Pasarić K; Gortan D; Janjanin S; Pavić D
    Otolaryngol Head Neck Surg; 2002 Dec; 127(6):549-57. PubMed ID: 12501107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part II. Telesurgery evaluation.
    Park JW; Lee DH; Kim YW; Lee BH; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):195-200. PubMed ID: 21815881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.