These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21096906)

  • 1. Energy expenditure during human gait. II - Role of muscle groups.
    Rodrigo S; Garcia I; Franco M; Alonso-Vazquez A; Ambrosio J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4858-61. PubMed ID: 21096906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy expenditure during human gait. I - An optimized model.
    Rodrigo S; Garcia I; Franco M; Alonso-Vazquez A; Ambrosio J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4254-7. PubMed ID: 21096641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy efficient hopping with Hill-type muscle properties on segmented legs.
    Rosendo A; Iida F
    Bioinspir Biomim; 2016 Apr; 11(3):036002. PubMed ID: 27070710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeletons Improve Locomotion Economy by Reducing Active Muscle Volume.
    Beck ON; Punith LK; Nuckols RW; Sawicki GS
    Exerc Sport Sci Rev; 2019 Oct; 47(4):237-245. PubMed ID: 31436749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of ankle restriction on the multijoint coordination of vertical jumping.
    Arakawa H; Nagano A; Hay DC; Kanehisa H
    J Appl Biomech; 2013 Aug; 29(4):468-73. PubMed ID: 23182763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental/analytical analysis of human locomotion using bondgraphs.
    Pop C; Khajepour A; Huissoon JP; Patla AE
    J Biomech Eng; 2003 Aug; 125(4):490-8. PubMed ID: 12968573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle and external load contribution to knee joint contact loads during normal gait.
    Winby CR; Lloyd DG; Besier TF; Kirk TB
    J Biomech; 2009 Oct; 42(14):2294-300. PubMed ID: 19647257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal foot model for clinical gait analysis.
    Saraswat P; Andersen MS; Macwilliams BA
    J Biomech; 2010 Jun; 43(9):1645-52. PubMed ID: 20385385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.
    Rahmati SM; Rostami M; Beigzadeh B
    Technol Health Care; 2018; 26(6):889-907. PubMed ID: 29758956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.