These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21096923)

  • 1. Assessment of the assistive performance of an ankle exerciser using electromyographic signals.
    Saglia JA; Tsagarakis NG; Dai JS; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5854-8. PubMed ID: 21096923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study.
    Yepes JC; Portela MA; Saldarriaga ÁJ; Pérez VZ; Betancur MJ
    Biomed Eng Online; 2019 Jan; 18(1):3. PubMed ID: 30606192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework.
    Abu-Dakka FJ; Valera A; Escalera JA; Abderrahim M; Page A; Mata V
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and control of an active 1-DoF mechanism for knee rehabilitation.
    Naghavi N; Mahjoob MJ
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):588-94. PubMed ID: 25811934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme.
    Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis.
    Zhang C; Zhu Y; Fan J; Zhao J; Yu H
    Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.
    Farmer S; Silver-Thorn S; Voglewede P; Beardsley SA
    J Neural Eng; 2014 Oct; 11(5):056027. PubMed ID: 25246110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of kinematic and EMG parameters between unassisted, fixed- and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects.
    Perez-Ibarra JC; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():461-466. PubMed ID: 28813863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. User-Adaptive Assistance of Assistive Knee Braces for Gait Rehabilitation.
    Ma H; Zhong C; Chen B; Chan KM; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1994-2005. PubMed ID: 30188836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.