These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21096923)

  • 41. Intention-based EMG control for powered exoskeletons.
    Lenzi T; De Rossi SM; Vitiello N; Carrozza MC
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2180-90. PubMed ID: 22588573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot.
    Zeng X; Zhu G; Yue L; Zhang M; Xie S
    J Healthc Eng; 2017; 2017():6819056. PubMed ID: 29075429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and Feasibility Study of a Leg-exoskeleton Assistive Wheelchair Robot with Tests on Gluteus Medius Muscles.
    Huang G; Ceccarelli M; Huang Q; Zhang W; Yu Z; Chen X; Mai J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integration of Forearm sEMG Signals with IMU Sensors for Trajectory Planning and Control of Assistive Robotic Arm.
    Schabron B; Reust A; Desai J; Yihun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5274-5277. PubMed ID: 31947047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle Rehabilitation.
    Covaciu F; Pisla A; Iordan AE
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface electromyography and plantar pressure changes with novel gait training device in participants with chronic ankle instability.
    Feger MA; Hertel J
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():117-124. PubMed ID: 27423026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exercise intensity progression for exercises performed on unstable and stable platforms based on ankle muscle activation.
    Borreani S; Calatayud J; Martin J; Colado JC; Tella V; Behm D
    Gait Posture; 2014; 39(1):404-9. PubMed ID: 23999147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinematic and electromyographic analyses of normal and device-assisted sit-to-stand transfers.
    Burnfield JM; Shu Y; Buster TW; Taylor AP; McBride MM; Krause ME
    Gait Posture; 2012 Jul; 36(3):516-22. PubMed ID: 22727735
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback.
    Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M
    J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bimanual shoulder flexion system with surface electromyography for hemiplegic patients after stroke: A preliminary study.
    Park K; Kwon S; Kim J; Rim B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975388. PubMed ID: 22275592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trajectory planning of a robot for lower limb rehabilitation.
    Pei Y; Kim Y; Obinata G; Hase K; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1259-63. PubMed ID: 22254545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facilitating activation of the peroneus longus: electromyographic analysis of exercises consistent with biomechanical function.
    Bellew JW; Frilot CF; Busch SC; Lamothe TV; Ozane CJ
    J Strength Cond Res; 2010 Feb; 24(2):442-6. PubMed ID: 20072056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.