BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21096924)

  • 1. A variable structure pantograph mechanism for comprehensive upper extremity haptic movement training.
    Oblak J; Perry JC; Jung JH; Cikajlo I; Keller T; Matjacić Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5859-62. PubMed ID: 21096924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training.
    Perry JC; Oblak J; Jung JH; Cikajlo I; Veneman JF; Goljar N; Bizovičar N; Matjačić Z; Keller T
    J Rehabil Res Dev; 2011; 48(4):317-33. PubMed ID: 21674386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A planar 3DOF robotic exoskeleton for rehabilitation and assessment.
    Ball SJ; Brown IE; Scott SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4024-7. PubMed ID: 18002882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ACT-4D: a novel rehabilitation robot for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; McPherson JG; Schouten AC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975460. PubMed ID: 22275658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards brain-robot interfaces in stroke rehabilitation.
    Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective measurement of synergistic movement patterns of the upper extremity following stroke: an explorative study.
    Krabben T; Prange GB; Molier BI; Rietman JS; Buurke JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975430. PubMed ID: 22275631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke.
    Cho KH; Song WK
    Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrist and Finger Torque Sensor for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; Moulton TS; Miller LC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975464. PubMed ID: 22275662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal haptic drive: a robot for arm and wrist rehabilitation.
    Oblak J; Cikajlo I; Matjacić Z
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):293-302. PubMed ID: 19846386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-Assisted Reach Training With an Active Assistant Protocol for Long-Term Upper Extremity Impairment Poststroke: A Randomized Controlled Trial.
    Cho KH; Song WK
    Arch Phys Med Rehabil; 2019 Feb; 100(2):213-219. PubMed ID: 30686326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARMin: a robot for patient-cooperative arm therapy.
    Nef T; Mihelj M; Riener R
    Med Biol Eng Comput; 2007 Sep; 45(9):887-900. PubMed ID: 17674069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
    Cao W; Zhang F; Yu H; Hu B; Meng Q
    Technol Health Care; 2018; 26(3):409-420. PubMed ID: 29400683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of negative viscosity as upper extremity training for stroke survivors.
    Huang FC; Patton JL
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975514. PubMed ID: 22275710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.