These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21096938)

  • 1. Visual error augmentation enhances learning in three dimensions.
    Sharp I; Huang FC; Patton JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5915-8. PubMed ID: 21096938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual error augmentation enhances learning in three dimensions.
    Sharp I; Huang F; Patton J
    J Neuroeng Rehabil; 2011 Sep; 8():52. PubMed ID: 21888657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation.
    Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A
    Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error amplification to promote motor learning and motivation in therapy robotics.
    Shirzad N; Van der Loos HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3907-10. PubMed ID: 23366782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to visuomotor rotation in isometric reaching is similar to movement adaptation.
    Rotella MF; Koehler M; Nisky I; Bastian AJ; Okamura AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650431. PubMed ID: 24187249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuomotor discordance in virtual reality: effects on online motor control.
    Bagce HF; Saleh S; Adamovich SV; Tunik E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7262-5. PubMed ID: 22256015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual-based sensory motor learning during dynamic balance tasks viewed in a virtual environment.
    Betker AL; Moussavi Z; Szturm T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6110-3. PubMed ID: 18003409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging.
    Messier J; Adamovich S; Jack D; Hening W; Sage J; Poizner H
    Exp Brain Res; 2007 May; 179(3):457-74. PubMed ID: 17146644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in Hand Trajectory of Reaching Movements by Error-Augmentation.
    Israely S; Leisman G; Carmeli E
    Adv Exp Med Biol; 2018; 1070():71-84. PubMed ID: 29564773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuomotor learning enhanced by augmenting instantaneous trajectory error feedback during reaching.
    Patton JL; Wei YJ; Bajaj P; Scheidt RA
    PLoS One; 2013; 8(1):e46466. PubMed ID: 23382796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous sensorimotor adaptation and sequence learning.
    Overduin SA; Richardson AG; Bizzi E; Press DZ
    Exp Brain Res; 2008 Jan; 184(3):451-6. PubMed ID: 18030451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error Augmentation Improves Visuomotor Adaptation during a Full-Body Balance Task.
    Fasola J; Kannape OA; Bouri M; Bleuler H; Blanke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1529-1533. PubMed ID: 31946185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding functional reorganization of motor redundancy using a body-machine interface.
    De Santis D; Mussa-Ivaldi FA
    J Neuroeng Rehabil; 2020 May; 17(1):61. PubMed ID: 32393288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target size matters: target errors contribute to the generalization of implicit visuomotor learning.
    Reichenthal M; Avraham G; Karniel A; Shmuelof L
    J Neurophysiol; 2016 Aug; 116(2):411-24. PubMed ID: 27121580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinates transformation and learning control for visually-guided voluntary movement with iteration: a Newton-like method in a function space.
    Kawato M; Isobe M; Maeda Y; Suzuki R
    Biol Cybern; 1988; 59(3):161-77. PubMed ID: 3179342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.