These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21096956)
1. Limitations of the homogenized cardiac Monodomain model for the case of low gap junctional coupling. Costa CM; Weber Dos Santos R Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():228-31. PubMed ID: 21096956 [TBL] [Abstract][Full Text] [Related]
2. Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling. Hand PE; Peskin CS Bull Math Biol; 2010 Aug; 72(6):1408-24. PubMed ID: 20049544 [TBL] [Abstract][Full Text] [Related]
3. Role of gap junctions in the propagation of the cardiac action potential. Rohr S Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351 [TBL] [Abstract][Full Text] [Related]
4. Ephaptic coupling of cardiac cells through the junctional electric potential. Copene ED; Keener JP J Math Biol; 2008 Aug; 57(2):265-84. PubMed ID: 18265985 [TBL] [Abstract][Full Text] [Related]
5. Non-ohmic tissue conduction in cardiac electrophysiology: Upscaling the non-linear voltage-dependent conductance of gap junctions. Hurtado DE; Jilberto J; Panasenko G PLoS Comput Biol; 2020 Feb; 16(2):e1007232. PubMed ID: 32097410 [TBL] [Abstract][Full Text] [Related]
6. Ephaptic coupling in cardiac myocytes. Lin J; Keener JP IEEE Trans Biomed Eng; 2013 Feb; 60(2):576-82. PubMed ID: 23335235 [TBL] [Abstract][Full Text] [Related]
7. Properties of cardiac conduction in a cell-based computational model. Jæger KH; Edwards AG; McCulloch A; Tveito A PLoS Comput Biol; 2019 May; 15(5):e1007042. PubMed ID: 31150383 [TBL] [Abstract][Full Text] [Related]
8. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology. Bruce D; Pathmanathan P; Whiteley JP Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526 [TBL] [Abstract][Full Text] [Related]
9. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43. Wei N; Mori Y; Tolkacheva EG J Theor Biol; 2016 May; 397():103-14. PubMed ID: 26968493 [TBL] [Abstract][Full Text] [Related]
10. Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study. Henriquez AP; Vogel R; Muller-Borer BJ; Henriquez CS; Weingart R; Cascio WE Biophys J; 2001 Oct; 81(4):2112-21. PubMed ID: 11566782 [TBL] [Abstract][Full Text] [Related]
11. Adaptive multiscale model for simulating cardiac conduction. Hand PE; Griffith BE Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14603-8. PubMed ID: 20671202 [TBL] [Abstract][Full Text] [Related]
12. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue. Costa CM; Silva PA; dos Santos RW IEEE Trans Biomed Eng; 2016 Apr; 63(4):765-74. PubMed ID: 26292333 [TBL] [Abstract][Full Text] [Related]
13. Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Lin J; Keener JP Proc Natl Acad Sci U S A; 2010 Dec; 107(49):20935-40. PubMed ID: 21078961 [TBL] [Abstract][Full Text] [Related]
14. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199 [TBL] [Abstract][Full Text] [Related]
15. Role of ephaptic coupling in discordant alternans domain sizes and action potential propagation in the heart. Otani NF; Figueroa E; Garrison J; Hewson M; Muñoz L; Fenton FH; Karma A; Weinberg SH Phys Rev E; 2023 May; 107(5-1):054407. PubMed ID: 37329030 [TBL] [Abstract][Full Text] [Related]
16. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Rohr S; Kucera JP; Kléber AG Circ Res; 1998 Oct; 83(8):781-94. PubMed ID: 9776725 [TBL] [Abstract][Full Text] [Related]
17. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction. Tsumoto K; Ashihara T; Haraguchi R; Nakazawa K; Kurachi Y Biophys J; 2011 Feb; 100(3):554-563. PubMed ID: 21281569 [TBL] [Abstract][Full Text] [Related]
18. Empirical study of an adaptive multiscale model for simulating cardiac conduction. Hand PE; Griffith BE Bull Math Biol; 2011 Dec; 73(12):3071-89. PubMed ID: 21533664 [TBL] [Abstract][Full Text] [Related]
19. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue. Hubbard ML; Henriquez CS Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772 [TBL] [Abstract][Full Text] [Related]
20. Regulation of connexin43 gap junctional conductance by ventricular action potentials. Lin X; Crye M; Veenstra RD Circ Res; 2003 Sep; 93(6):e63-73. PubMed ID: 12946947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]