These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21096959)

  • 41. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.
    Strbac V; Pierce DM; Vander Sloten J; Famaey N
    Comput Methods Biomech Biomed Engin; 2017 Dec; 20(16):1643-1657. PubMed ID: 29199498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time simulation of dynamically deformable finite element models using modal analysis and spectral Lanczos decomposition methods.
    Basdogan C
    Stud Health Technol Inform; 2001; 81():46-52. PubMed ID: 11317791
    [No Abstract]   [Full Text] [Related]  

  • 43. Optimized image-based soft tissue deformation algorithms for visualization of haptic needle insertion.
    Fortmeier D; Mastmeyer A; Handels H
    Stud Health Technol Inform; 2013; 184():136-40. PubMed ID: 23400145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of smoothness-increasing accuracy-conserving filters for improving streamline integration through discontinuous fields.
    Steffen M; Curtis S; Kirby RM; Ryan JK
    IEEE Trans Vis Comput Graph; 2008; 14(3):680-92. PubMed ID: 18369273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanical modeling and computer simulation of the brain during neurosurgery.
    Miller K; Joldes GR; Bourantas G; Warfield SK; Hyde DE; Kikinis R; Wittek A
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3250. PubMed ID: 31400252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.
    Itu L; Sharma P; Kamen A; Suciu C; Comaniciu D
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1428-55. PubMed ID: 24009129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inverse finite element characterization of soft tissues.
    Kauer M; Vuskovic V; Dual J; Szekely G; Bajka M
    Med Image Anal; 2002 Sep; 6(3):275-87. PubMed ID: 12270232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real time 3D visualization of intraoperative organ deformations using structured dictionary.
    Wang D; Tewfik AH
    IEEE Trans Med Imaging; 2012 Apr; 31(4):924-37. PubMed ID: 22127996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method to solve the forward problem in magnetic induction tomography based on the weakly coupled field approximation.
    Dekdouk B; Yin W; Ktistis C; Armitage DW; Peyton AJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):914-21. PubMed ID: 19932988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of soft tissue modelling to image-guided surgery.
    Carter TJ; Sermesant M; Cash DM; Barratt DC; Tanner C; Hawkes DJ
    Med Eng Phys; 2005 Dec; 27(10):893-909. PubMed ID: 16271490
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The selection of Tikhonov regularization parameter in dynamic electrical impedance imaging].
    Peng Y; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):571-3. PubMed ID: 14716847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of patient-specific biomechanical models for predicting large breast deformation.
    Han L; Hipwell JH; Tanner C; Taylor Z; Mertzanidou T; Cardoso J; Ourselin S; Hawkes DJ
    Phys Med Biol; 2012 Jan; 57(2):455-72. PubMed ID: 22173131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Data-guide for brain deformation in surgery: comparison of linear and nonlinear models.
    Hamidian H; Soltanian-Zadeh H; Faraji-Dana R; Gity M
    Biomed Eng Online; 2010 Sep; 9():51. PubMed ID: 20843360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterogeneous Subsurface Scattering Using the Finite Element Method.
    Arbree A; Walter B; Bala K
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):956-69. PubMed ID: 20855913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intraoperative brain shift compensation: accounting for dural septa.
    Chen I; Coffey AM; Ding S; Dumpuri P; Dawant BM; Thompson RC; Miga MI
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):499-508. PubMed ID: 21097376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical Constraint Finite Element Model for Medical Image Registration.
    Zhang J; Wang J; Wang X; Gao X; Feng D
    PLoS One; 2015; 10(10):e0140567. PubMed ID: 26495841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.