BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21096989)

  • 1. Non-invasive intracranial pressure estimation using support vector machine.
    Chacón M; Pardo C; Puppo C; Curilem M; Landerretche J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():996-9. PubMed ID: 21096989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy pattern classification of hemodynamic data can be used to determine noninvasive intracranial pressure.
    Schmidt B; Bocklisch SF; Pässler M; Czosnyka M; Schwarze JJ; Klingelhöfer J
    Acta Neurochir Suppl; 2005; 95():345-9. PubMed ID: 16463879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear regression for sub-peak detection of intracranial pressure signals.
    Scalzo F; Xu P; Bergsneider M; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5411-4. PubMed ID: 19163941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children.
    Fanelli A; Vonberg FW; LaRovere KL; Walsh BK; Smith ER; Robinson S; Tasker RC; Heldt T
    J Neurosurg Pediatr; 2019 Aug; 24(5):509-519. PubMed ID: 31443086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithm for automatic beat detection of cardiovascular pressure signals.
    Beattie ZT
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2594-7. PubMed ID: 19163234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automatic beat detection algorithm for pressure signals.
    Aboy M; McNames J; Thong T; Tsunami D; Ellenby MS; Goldstein B
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1662-70. PubMed ID: 16235652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spectral Approach to Model-Based Noninvasive Intracranial Pressure Estimation.
    Jaishankar R; Fanelli A; Filippidis A; Vu T; Holsapple J; Heldt T
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2398-2406. PubMed ID: 31880569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of dynamic cerebral autoregulation based on spontaneous fluctuations in arterial blood pressure and intracranial pressure.
    Panerai RB; Hudson V; Fan L; Mahony P; Yeoman PM; Hope T; Evans DH
    Physiol Meas; 2002 Feb; 23(1):59-72. PubMed ID: 11876242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artifact removal for intracranial pressure monitoring signals: a robust solution with signal decomposition.
    Feng M; Loy LY; Zhang F; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():797-801. PubMed ID: 22254431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of intracranial pressure recordings: comparison of PCA and signal averaging based filtering methods and signal period estimation.
    Calisto A; Galeano M; Bramanti A; Angileri F; Campobello G; Serrano S; Azzerboni B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3638-41. PubMed ID: 21096850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology.
    Hu X; Xu P; Asgari S; Vespa P; Bergsneider M
    IEEE Trans Biomed Eng; 2010 May; 57(5):1070-8. PubMed ID: 20659820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracranial pressure variation associated with changes in end-tidal CO2.
    Kim S; McNames J; Goldstein B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():9-12. PubMed ID: 17945969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Frequency-domain Approach to Noninvasive Intracranial Pressure Estimation.
    Jaishankar R; Fanelli A; Filippidis A; Vu T; Holsapple J; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5055-5058. PubMed ID: 31946995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to measure cerebrospinal fluid pressure invasively and noninvasively.
    Silverman CA; Linstrom CJ
    J Glaucoma; 2013; 22 Suppl 5():S26-8. PubMed ID: 23733122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Embedded Device for Real-Time Noninvasive Intracranial Pressure Estimation.
    Matthews JM; Fanelli A; Heldt T
    Acta Neurochir Suppl; 2018; 126():85-88. PubMed ID: 29492538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements.
    Shimbles S; Dodd C; Banister K; Mendelow AD; Chambers IR
    Physiol Meas; 2005 Dec; 26(6):1085-92. PubMed ID: 16311455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regression-based noninvasive estimation of intracranial pressure.
    Fanelli A; Vonberg FW; Jaishankar R; Imaduddin SM; Tasker RC; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4001-4004. PubMed ID: 29060774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension.
    Hornero R; Aboy M; Abásolo D; McNames J; Goldstein B
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1671-80. PubMed ID: 16235653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Different Calibration Methods in a Non-invasive ICP Assessment Model.
    Schmidt B; Cardim D; Weinhold M; Streif S; McLeod DD; Czosnyka M; Klingelhöfer J
    Acta Neurochir Suppl; 2018; 126():79-84. PubMed ID: 29492537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse morphology visualization and analysis with applications in cardiovascular pressure signals.
    Ellis T; McNames J; Aboy M
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1552-9. PubMed ID: 17867347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.