BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21096996)

  • 1. Evaluation of a multimode photoplethysmographic sensor during cuff-induced hypoperfusion.
    Shafique M; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1024-7. PubMed ID: 21096996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor.
    Shafique M; Kyriacou PA; Pal SK
    Med Biol Eng Comput; 2012 Jun; 50(6):575-83. PubMed ID: 22555629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of pulse oximeter failure rates during artificial hypoperfusion utilising a custom made multimode pulse oximetery sensor.
    Shafique M; Kyriacou PA; Pal SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4352-5. PubMed ID: 22255303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Biomed Opt; 2010; 15(2):027012. PubMed ID: 20459286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an optoelectronic sensor for the investigation of photoplethysmographic signals from the anterior fontanel of the newborn.
    May JM; Kyriacou PA; Petros AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():18-21. PubMed ID: 22254240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmographic signals and blood oxygen saturation values during artificial hypothermia in healthy volunteers.
    Shafique M; Kyriacou PA
    Physiol Meas; 2012 Dec; 33(12):2065-78. PubMed ID: 23171523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electrical and optical plethysmography sensors for noninvasive monitoring of hemoglobin concentration.
    Phillips JP; Hickey M; Kyriacou PA
    Sensors (Basel); 2012; 12(2):1816-26. PubMed ID: 22438739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor.
    Suzuki T; Kameyama K; Tamura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe.
    Abdollahi Z; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1728-31. PubMed ID: 24110040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of reflectance photoplethysmography on detecting cuff-induced vascular occlusions.
    Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():861-4. PubMed ID: 26736398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel non-invasive trans-reflectance photoplethysmographic probe for use in cases of low peripheral blood perfusion.
    Shafique M; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1489-92. PubMed ID: 19964531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary assessment of abdominal organ perfusion utilizing a fiber optic photoplethysmographic sensor.
    Hickey M; Samuels N; Randive N; Langford R; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1020-3. PubMed ID: 21096995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new probe for ankle systolic pressure measurement using photoplethysmography (PPG).
    Jönsson B; Laurent C; Skau T; Lindberg LG
    Ann Biomed Eng; 2005 Feb; 33(2):232-9. PubMed ID: 15771277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.