BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21096996)

  • 21. Development of an implantable pulse oximeter.
    Reichelt S; Fiala J; Werber A; Förster K; Heilmann C; Klemm R; Zappe H
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):581-8. PubMed ID: 18269993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoplethysmographic measurements from the esophagus using a new fiber-optic reflectance sensor.
    Phillips JP; Langford RM; Chang SH; Kyriacou PA; Jones DP
    J Biomed Opt; 2011 Jul; 16(7):077005. PubMed ID: 21806285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients.
    Kyriacou PA; Powell S; Langford RM; Jones DP
    Physiol Meas; 2002 Aug; 23(3):533-45. PubMed ID: 12214761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new method to estimate arterial blood pressure using photoplethysmographic signal.
    Jeong IC; Ko JI; Hwang SO; Yoon HR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4667-70. PubMed ID: 17945849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.
    Pilt K; Meigas K; Lass J; Rosmann M; Kaik J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1006-9. PubMed ID: 18002130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variability in time delay between two models of pulse oximeters for deriving the photoplethysmographic signals.
    Foo JY; Wilson SJ; Dakin C; Williams G; Harris MA; Cooper D
    Physiol Meas; 2005 Aug; 26(4):531-44. PubMed ID: 15886446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using the multi-parameter variability of photoplethysmographic signals to evaluate short-term cardiovascular regulation.
    Chen X; Liu N; Huang Y; Yun F; Wang J; Li J
    J Clin Monit Comput; 2015 Oct; 29(5):605-12. PubMed ID: 25408376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the human oesophagus as a new monitoring site for blood oxygen saturation.
    Kyriacou PA; Moye AR; Choi DM; Langford RM; Jones DP
    Physiol Meas; 2001 Feb; 22(1):223-32. PubMed ID: 11236883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.
    Orphanidou C
    Comput Biol Med; 2017 Feb; 81():45-54. PubMed ID: 28012294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theory of Dynamic Pulsatile Spectroscopy for photoplethysmographic signals analysis.
    Rybynok VO; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2652-5. PubMed ID: 24110272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free flap pulse oximetry utilizing reflectance photoplethysmography.
    Zaman T; Kyriacou PA; Pal SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4046-9. PubMed ID: 24110620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of key design parameters for mitigating motion artefact in the mobile reflectance PPG signal to improve estimation of arterial oxygenation.
    Kasbekar RS; Mendelson Y
    Physiol Meas; 2018 Jul; 39(7):075008. PubMed ID: 30051881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A system for assessing motion artifacts in the signal of a micro-optic in-ear vital signs sensor.
    Vogel S; Hülsbusch M; Starke D; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():510-3. PubMed ID: 19162705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic ankle pressure measurements using PPG in ankle-brachial pressure index determination.
    Jönsson B; Laurent C; Eneling M; Skau T; Lindberg LG
    Eur J Vasc Endovasc Surg; 2005 Oct; 30(4):395-401. PubMed ID: 15964772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiration signals from photoplethysmography.
    Nilsson LM
    Anesth Analg; 2013 Oct; 117(4):859-865. PubMed ID: 23449854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.