These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21097034)

  • 1. Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities.
    Ha KH; Varol HA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3515-8. PubMed ID: 21097034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volitional control of a prosthetic knee using surface electromyography.
    Ha KH; Varol HA; Goldfarb M
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):144-51. PubMed ID: 20805047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A running controller for a powered transfemoral prosthesis.
    Huff AM; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4168-71. PubMed ID: 23366846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.
    Toledo C; Simon A; Muñoz R; Vera A; Leija L; Hargrove L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4332-5. PubMed ID: 23366886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations?
    Hunt GR; Hood S; Gabert L; Lenzi T
    J Neuroeng Rehabil; 2023 May; 20(1):58. PubMed ID: 37131231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.
    Farmer S; Silver-Thorn S; Voglewede P; Beardsley SA
    J Neural Eng; 2014 Oct; 11(5):056027. PubMed ID: 25246110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface electromyographic activity of five residual limb muscles recorded during isometric contraction in transfemoral amputees with osseointegrated prostheses.
    Pantall A; Durham S; Ewins D
    Clin Biomech (Bristol, Avon); 2011 Aug; 26(7):760-5. PubMed ID: 21474221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
    Segil JL; Huddle SA; Weir RFF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic analysis of above-knee amputee gait.
    Bae TS; Choi K; Hong D; Mun M
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):557-66. PubMed ID: 17321021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor control and learning with lower-limb myoelectric control in amputees.
    Alcaide-Aguirre RE; Morgenroth DC; Ferris DP
    J Rehabil Res Dev; 2013; 50(5):687-98. PubMed ID: 24013916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary limb motion estimation for the control of active knee prostheses.
    Vallery H; Burgkart R; Hartmann C; Mitternacht J; Riener R; Buss M
    Biomed Tech (Berl); 2011 Feb; 56(1):45-51. PubMed ID: 21303189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees.
    Al-Timemy AH; Khushaba RN; Bugmann G; Escudero J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):650-61. PubMed ID: 26111399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis.
    Lee S; Hong J
    Proc Inst Mech Eng H; 2009 Feb; 223(2):263-71. PubMed ID: 19278201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of stair ascent and descent with a powered transfemoral prosthesis.
    Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.