BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21097036)

  • 1. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.
    Zhang Q; Hayashibe M; Papaiordanidou M; Fraisse P; Fattal C; Guiraud D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3523-6. PubMed ID: 21097036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation.
    Hayashibe M; Zhang Q; Guiraud D; Fattal C
    J Neural Eng; 2011 Dec; 8(6):064001. PubMed ID: 21975831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.
    Ibitoye MO; Estigoni EH; Hamzaid NA; Wahab AK; Davis GM
    Sensors (Basel); 2014 Jul; 14(7):12598-622. PubMed ID: 25025551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.
    Li Z; Guiraud D; Andreu D; Benoussaad M; Fattal C; Hayashibe M
    J Neuroeng Rehabil; 2016 Jun; 13(1):60. PubMed ID: 27334441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients.
    Li Z; Guiraud D; Andreu D; Gelis A; Fattal C; Hayashibe M
    Int J Neural Syst; 2018 Aug; 28(6):1750063. PubMed ID: 29378445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evoked EMG versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury.
    Estigoni EH; Fornusek C; Hamzaid NA; Hasnan N; Smith RM; Davis GM
    Sensors (Basel); 2014 Dec; 14(12):22907-20. PubMed ID: 25479324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of motor unit rate modulation versus recruitment in repeated submaximal voluntary contractions performed by control and spinal cord injured subjects.
    Thomas CK; del Valle A
    J Electromyogr Kinesiol; 2001 Jun; 11(3):217-29. PubMed ID: 11335152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characterization of contractile and myoelectric activities in paralyzed tibialis anterior post electrically elicited muscle fatigue.
    Yu NY; Chang SH
    Artif Organs; 2010 Apr; 34(4):E117-21. PubMed ID: 20420602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evoked EMG and muscle fatigue during isokinetic FES-cycling in individuals with SCI.
    Estigoni EH; Fornusek C; Smith RM; Davis GM
    Neuromodulation; 2011; 14(4):349-55; discussion 355. PubMed ID: 21992430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle.
    Erfanian A; Chizeck HJ; Hashemi RM
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):188-202. PubMed ID: 9473842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activation varies with contraction mode in human spinal cord injury.
    Kim HE; Thompson CK; Hornby TG
    Muscle Nerve; 2015 Feb; 51(2):235-45. PubMed ID: 24825184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
    Shields RK; Dudley-Javoroski S
    Clin Neurophysiol; 2013 Sep; 124(9):1853-60. PubMed ID: 23673062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency response characteristics of ankle plantar flexors in humans following spinal cord injury: relation to degree of spasticity.
    Hidler JM; Harvey RL; Rymer WZ
    Ann Biomed Eng; 2002; 30(7):969-81. PubMed ID: 12398427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG and metabolite-based prediction of force in paralyzed quadriceps muscle under interrupted stimulation.
    Levin O; Mizrahi J
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):301-14. PubMed ID: 10498376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury.
    Thomas CK; Zaidner EY; Calancie B; Broton JG; Bigland-Ritchie BR
    Exp Neurol; 1997 Dec; 148(2):414-23. PubMed ID: 9417821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central excitability contributes to supramaximal volitional contractions in human incomplete spinal cord injury.
    Thompson CK; Lewek MD; Jayaraman A; Hornby TG
    J Physiol; 2011 Aug; 589(Pt 15):3739-52. PubMed ID: 21610138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-tension properties of ankle muscles in chronic human spinal cord injury.
    McDonald MF; Kevin Garrison M; Schmit BD
    J Biomech; 2005 Dec; 38(12):2344-53. PubMed ID: 16214482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.