These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21097039)

  • 1. BEM simulations of Rayleigh wave propagation in media with microstructural effects: Application to long bones.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3535-8. PubMed ID: 21097039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of bone's microstructural effects on Rayleigh wave propagation.
    Vavva MG; Gergidis LN; Charalambopoulos A; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2885-8. PubMed ID: 23366527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on Rayleigh wave dispersion in bone according to Mindlin's Form II gradient elasticity.
    Vavva MG; Gergidis LN; Protopappas VC; Charalambopoulos A; Polyzos D; Fotiadis DI
    J Acoust Soc Am; 2014 May; 135(5):3117-26. PubMed ID: 24926506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2009 May; 125(5):3414-27. PubMed ID: 19425680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Problems with ultrasonic measurements of shear modules of structured media.
    Besdo D; Besdo S; Behrens BA; Bouguecha A
    Acta Biomater; 2007 Sep; 3(5):723-33. PubMed ID: 17289452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound and the biomechanical competence of bone.
    Nicholson PF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabric dependence of bone ultrasound.
    Cowin SC; Cardoso L
    Acta Bioeng Biomech; 2010; 12(2):3-23. PubMed ID: 20882938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase velocity analysis of acoustic propagation in trabecular bone.
    Villarreal A; Medina L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1332-5. PubMed ID: 21095931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Gaussian shear wave in a dispersive medium.
    Parker KJ; Baddour N
    Ultrasound Med Biol; 2014 Apr; 40(4):675-84. PubMed ID: 24412170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone.
    Sevostianov I; Kachanov M
    J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.