These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21097039)

  • 21. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The measurement of broadband ultrasonic attenuation in cancellous bone--a review of the science and technology.
    Langton CM; Njeh CF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1546-54. PubMed ID: 18986945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of the influence of reflection on the attenuation of cancellous bone.
    Klinge S; Hackl K; Gilbert RP
    Biomech Model Mechanobiol; 2013 Jan; 12(1):185-99. PubMed ID: 22484789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the Biot model to ultrasound in bone: inverse problem.
    Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.
    Zhan Y; Liu C; Zhang F; Qiu Z
    Ultrasonics; 2016 Jul; 69():243-7. PubMed ID: 27079489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 1-D elasticity assessment in soft solids from shear wave correlation: the time-reversal approach.
    Benech N; Catheline S; Brum J; Gallot T; Negreira CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2400-10. PubMed ID: 19942527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical study of Rayleigh wave propagation along a horizontal semi-infinite crack buried in half-space.
    Chakrapani SK
    J Acoust Soc Am; 2017 Jan; 141(1):137. PubMed ID: 28147589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.
    Dencks S; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1884-95. PubMed ID: 24658719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What do we know about shear wave dispersion in normal and steatotic livers?
    Parker KJ; Partin A; Rubens DJ
    Ultrasound Med Biol; 2015 May; 41(5):1481-7. PubMed ID: 25722029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alternative ultrasonic method for measuring the elastic properties of cortical bone.
    Pithioux M; Lasaygues P; Chabrand P
    J Biomech; 2002 Jul; 35(7):961-8. PubMed ID: 12052398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Singular value decomposition-based wave extraction in axial transmission: application to cortical bone ultrasonic characterization.
    Sasso M; Haïat G; Talmant M; Laugier P; Naili S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1328-32. PubMed ID: 18599420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.