These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 21097089)
1. Developing a 6-DOF robot to investigate multi-axis ACL injuries under valgus loading coupled with tibia internal rotation. Ren Y; Jacobs BJ; Nuber GW; Koh JL; Zhang LQ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3942-5. PubMed ID: 21097089 [TBL] [Abstract][Full Text] [Related]
2. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. Meyer EG; Haut RC J Biomech; 2008 Dec; 41(16):3377-83. PubMed ID: 19007932 [TBL] [Abstract][Full Text] [Related]
3. Uni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanism of ACL injury. Kiapour AM; Kiapour A; Goel VK; Quatman CE; Wordeman SC; Hewett TE; Demetropoulos CK J Biomech; 2015 Jul; 48(10):1745-51. PubMed ID: 26070647 [TBL] [Abstract][Full Text] [Related]
5. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism. Kiapour AM; Demetropoulos CK; Kiapour A; Quatman CE; Wordeman SC; Goel VK; Hewett TE Am J Sports Med; 2016 Aug; 44(8):2087-96. PubMed ID: 27159285 [TBL] [Abstract][Full Text] [Related]
6. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury. Rasmussen MT; Nitri M; Williams BT; Moulton SG; Cruz RS; Dornan GJ; Goldsmith MT; LaPrade RF Am J Sports Med; 2016 Mar; 44(3):585-92. PubMed ID: 26684663 [TBL] [Abstract][Full Text] [Related]
7. Knee Kinematics During Noncontact Anterior Cruciate Ligament Injury as Determined From Bone Bruise Location. Kim SY; Spritzer CE; Utturkar GM; Toth AP; Garrett WE; DeFrate LE Am J Sports Med; 2015 Oct; 43(10):2515-21. PubMed ID: 26264770 [TBL] [Abstract][Full Text] [Related]
8. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588 [TBL] [Abstract][Full Text] [Related]
9. Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Clin Orthop Relat Res; 2017 Oct; 475(10):2385-2396. PubMed ID: 28455730 [TBL] [Abstract][Full Text] [Related]
10. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study. Liu-Barba D; Hull ML; Howell SM J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385 [TBL] [Abstract][Full Text] [Related]
11. Comparison of ACL Strain in the MCL-Deficient and MCL-Reconstructed Knee During Simulated Landing in a Cadaveric Model. Mancini EJ; Kohen R; Esquivel AO; Cracchiolo AM; Lemos SE Am J Sports Med; 2017 Apr; 45(5):1090-1094. PubMed ID: 28165760 [TBL] [Abstract][Full Text] [Related]
12. The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Kanamori A; Zeminski J; Rudy TW; Li G; Fu FH; Woo SL Arthroscopy; 2002 Apr; 18(4):394-8. PubMed ID: 11951198 [TBL] [Abstract][Full Text] [Related]
13. High Axial Loads While Walking Increase Anterior Tibial Translation in Intact and Anterior Cruciate Ligament-Deficient Knees. Kim JG; Bae TS; Lee SH; Jang KM; Jeong JS; Kyung BS; Lim HC; Ahn JH; Bae JH; Wang JH Arthroscopy; 2015 Jul; 31(7):1289-95. PubMed ID: 25842990 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Hamstring Tendon Autograft Harvest on the Restoration of Knee Stability in the Setting of Concurrent Anterior Cruciate Ligament and Medial Collateral Ligament Injuries. Kremen TJ; Polakof LS; Rajaee SS; Nelson TJ; Metzger MF Am J Sports Med; 2018 Jan; 46(1):163-170. PubMed ID: 29048929 [TBL] [Abstract][Full Text] [Related]
15. Determination of the Position of the Knee at the Time of an Anterior Cruciate Ligament Rupture for Male Versus Female Patients by an Analysis of Bone Bruises. Owusu-Akyaw KA; Kim SY; Spritzer CE; Collins AT; Englander ZA; Utturkar GM; Garrett WE; DeFrate LE Am J Sports Med; 2018 Jun; 46(7):1559-1565. PubMed ID: 29667852 [TBL] [Abstract][Full Text] [Related]
16. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296 [TBL] [Abstract][Full Text] [Related]
17. Effects of Anterior Closing Wedge Tibial Osteotomy on Anterior Cruciate Ligament Force and Knee Kinematics. Yamaguchi KT; Cheung EC; Markolf KL; Boguszewski DV; Mathew J; Lama CJ; McAllister DR; Petrigliano FA Am J Sports Med; 2018 Feb; 46(2):370-377. PubMed ID: 29100001 [TBL] [Abstract][Full Text] [Related]
18. Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study. Lording T; Corbo G; Bryant D; Burkhart TA; Getgood A Clin Orthop Relat Res; 2017 Oct; 475(10):2401-2408. PubMed ID: 28536855 [TBL] [Abstract][Full Text] [Related]
19. Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings. Beaulieu ML; Wojtys EM; Ashton-Miller JA Am J Sports Med; 2015 Sep; 43(9):2233-41. PubMed ID: 26122384 [TBL] [Abstract][Full Text] [Related]
20. A biomechanical comparison of 2 femoral fixation techniques for anterior cruciate ligament reconstruction in skeletally immature patients: over-the-top fixation versus transphyseal technique. Lertwanich P; Kato Y; Martins CA; Maeyama A; Ingham SJ; Kramer S; Linde-Rosen M; Smolinski P; Fu FH Arthroscopy; 2011 May; 27(5):672-80. PubMed ID: 21663723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]