These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21097103)

  • 1. Frequency domain surface EMG sensor fusion for estimating finger forces.
    Potluri C; Kumar P; Anugolu M; Urfer A; Chiu S; Naidu D; Schoen MP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5975-8. PubMed ID: 21097103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation.
    Potluri C; Anugolu M; Schoen MP; Subbaram Naidu D; Urfer A; Chiu S
    Comput Biol Med; 2013 Nov; 43(11):1815-26. PubMed ID: 24209927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonnegative matrix factorization for the identification of EMG finger movements: evaluation using matrix analysis.
    Naik GR; Nguyen HT
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):478-485. PubMed ID: 25486650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on Estimation of Joint Force Through Isometric Index Finger Abduction With the Help of SEMG Peaks for Biomedical Applications.
    Na Y; Choi C; Lee HD; Kim J
    IEEE Trans Cybern; 2016 Jan; 46(1):2-8. PubMed ID: 25594990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal tracking of a sEMG based force model for a prosthetic hand.
    Potluri C; Anugolu M; Yihun Y; Jensen A; Chiu S; Schoen MP; Naidu DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1604-7. PubMed ID: 22254629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.
    Ngeo J; Tamei T; Shibata T; Orlando MF; Behera L; Saxena A; Dutta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():338-41. PubMed ID: 24109693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral multifinger deficits in symmetric key-pressing tasks.
    Li ZM; Zatsiorsky VM; Li S; Danion F; Latash ML
    Exp Brain Res; 2001 Sep; 140(1):86-94. PubMed ID: 11500801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
    Potluri C; Anugolu M; Chiu S; Urfer A; Schoen MP; Naidu DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3102-5. PubMed ID: 23366581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-cost, wearable sEMG sensor for upper limb prosthetic application.
    Prakash A; Kumari B; Sharma S
    J Med Eng Technol; 2019 May; 43(4):235-247. PubMed ID: 31414614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble-based regression approach for continuous estimation of wrist and fingers movements from surface electromyography.
    Alazrai R; Khalifeh A; Alnuman N; Alabed D; Mowafi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():319-322. PubMed ID: 28268341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward direct biocontrol using surface EMG signals: control of finger and wrist joint models.
    Reddy NP; Gupta V
    Med Eng Phys; 2007 Apr; 29(3):398-403. PubMed ID: 16682244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relations between surface EMG of extrinsic flexors and individual finger forces support the notion of muscle compartments.
    Danion F; Li S; Zatsiorsky VM; Latash ML
    Eur J Appl Physiol; 2002 Nov; 88(1-2):185-8. PubMed ID: 12436289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of forces exerted by the fingers using standardised surface electromyography from the forearm.
    DiDomenico A; Nussbaum MA
    Ergonomics; 2008 Jun; 51(6):858-71. PubMed ID: 18484400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities.
    Dai C; Cao Y; Hu X
    Ann Biomed Eng; 2019 Jun; 47(6):1357-1368. PubMed ID: 30834478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time isometric finger extension force estimation based on motor unit discharge information.
    Zheng Y; Hu X
    J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.
    Kim S; Kim J; Ahn S; Kim Y
    Technol Health Care; 2018; 26(S1):249-258. PubMed ID: 29710753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spatial characteristics of rapid finger oscillations.
    Heuer H
    Motor Control; 2006 Jul; 10(3):212-31. PubMed ID: 17106131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.