These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21097144)

  • 1. Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure.
    Morgenstern C; Schwaibold M; Randerath W; Bolz A; Jane R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6142-5. PubMed ID: 21097144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An invasive and a noninvasive approach for the automatic differentiation of obstructive and central hypopneas.
    Morgenstern C; Schwaibold M; Randerath WJ; Bolz A; Jané R
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1927-36. PubMed ID: 20403779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of noninvasive single-channel automated differentiation of obstructive and central hypopneas with nasal airflow.
    Morgenstern C; Randerath WJ; Schwaibold M; Bolz A; Jané R
    Respiration; 2013; 85(4):312-8. PubMed ID: 22987059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic differentiation of obstructive and central hypopneas with esophageal pressure measurement during sleep.
    Morgenstern C; Schwaibold M; Randerath W; Bolz A; Jane R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7102-5. PubMed ID: 19963945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas.
    Randerath WJ; Treml M; Priegnitz C; Stieglitz S; Hagmeyer L; Morgenstern C
    Sleep; 2013 Mar; 36(3):363-8. PubMed ID: 23450252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative prolongation of inspiratory time predicts high versus low resistance categorization of hypopneas.
    Mooney AM; Abounasr KK; Rapoport DM; Ayappa I
    J Clin Sleep Med; 2012 Apr; 8(2):177-85. PubMed ID: 22505863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Chest Wall EMG to Classify Hypopneas as Obstructive or Central.
    Berry RB; Ryals S; Wagner MH
    J Clin Sleep Med; 2018 May; 14(5):725-733. PubMed ID: 29734977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of nasal prong pressure and thermistor measurements for detecting respiratory events during sleep.
    BaHammam A
    Respiration; 2004; 71(4):385-90. PubMed ID: 15316213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of sleep apnea by automatic analysis of nasal pressure and forced oscillation impedance.
    Steltner H; Staats R; Timmer J; Vogel M; Guttmann J; Matthys H; Christian Virchow J
    Am J Respir Crit Care Med; 2002 Apr; 165(7):940-4. PubMed ID: 11934718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal infrared imaging: a novel method to monitor airflow during polysomnography.
    Murthy JN; van Jaarsveld J; Fei J; Pavlidis I; Harrykissoon RI; Lucke JF; Faiz S; Castriotta RJ
    Sleep; 2009 Nov; 32(11):1521-7. PubMed ID: 19928392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endotyping Sleep Apnea One Breath at a Time: An Automated Approach for Separating Obstructive from Central Sleep-disordered Breathing.
    Parekh A; Tolbert TM; Mooney AM; Ramos-Cejudo J; Osorio RS; Treml M; Herkenrath SD; Randerath WJ; Ayappa I; Rapoport DM
    Am J Respir Crit Care Med; 2021 Dec; 204(12):1452-1462. PubMed ID: 34449303
    [No Abstract]   [Full Text] [Related]  

  • 12. Non-contact diagnosis of obstructive sleep apnea using impulse-radio ultra-wideband radar.
    Kang S; Kim DK; Lee Y; Lim YH; Park HK; Cho SH; Cho SH
    Sci Rep; 2020 Mar; 10(1):5261. PubMed ID: 32210266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of inspiratory flow limitation in children with sleep-disordered breathing by a nasal cannula pressure transducer system.
    Serebrisky D; Cordero R; Mandeli J; Kattan M; Lamm C
    Pediatr Pulmonol; 2002 May; 33(5):380-7. PubMed ID: 11948984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method to quantify breathing effort from respiratory mechanics and esophageal pressure.
    Gell LK; Reynolds KJ; McEvoy RD; Nguyen DP; Catcheside PG
    J Appl Physiol (1985); 2024 Jun; 136(6):1418-1428. PubMed ID: 38602001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing Obstructive Versus Central Apneas in Infrared Video of Sleep Using Deep Learning: Validation Study.
    Akbarian S; Montazeri Ghahjaverestan N; Yadollahi A; Taati B
    J Med Internet Res; 2020 May; 22(5):e17252. PubMed ID: 32441656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing central from obstructive hypopneas on a clinical polysomnogram.
    Javaheri S; Rapoport DM; Schwartz AR
    J Clin Sleep Med; 2023 Apr; 19(4):823-834. PubMed ID: 36661093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing obstructive from central sleep apnea events: diaphragm electromyogram and esophageal pressure compared.
    Luo YM; Tang J; Jolley C; Steier J; Zhong NS; Moxham J; Polkey MI
    Chest; 2009 May; 135(5):1133-1141. PubMed ID: 19118271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Respiratory Events in Obstructive Sleep Apnea Using Suprasternal Pressure Monitoring.
    Glos M; Sabil A; Jelavic KS; Schöbel C; Fietze I; Penzel T
    J Clin Sleep Med; 2018 Mar; 14(3):359-369. PubMed ID: 29458696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of sleep-disordered breathing from a single-channel airflow record.
    Nakano H; Tanigawa T; Furukawa T; Nishima S
    Eur Respir J; 2007 Apr; 29(4):728-36. PubMed ID: 17251229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of sleep-disordered breathing in children.
    Guilleminault C; Pelayo R; Leger D; Clerk A; Bocian RC
    Pediatrics; 1996 Nov; 98(5):871-82. PubMed ID: 8909480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.