These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 21097222)
1. Model based control of a rehabilitation robot for lower extremities. Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222 [TBL] [Abstract][Full Text] [Related]
2. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors. Feng Y; Wang H; Vladareanu L; Chen Z; Jin D Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739 [TBL] [Abstract][Full Text] [Related]
3. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
4. Design and Research of an Articulated Tracked Firefighting Robot. Zhao J; Zhang Z; Liu S; Tao Y; Liu Y Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890764 [TBL] [Abstract][Full Text] [Related]
5. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related]
6. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. Han S; Wang H; Tian Y; Christov N ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252 [TBL] [Abstract][Full Text] [Related]
7. Motion synthesis and force distribution analysis for a biped robot. Trojnacki MT; Zielińska T Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810 [TBL] [Abstract][Full Text] [Related]
8. Iterative Learning Impedance for Lower Limb Rehabilitation Robot. Guo C; Guo S; Ji J; Xi F J Healthc Eng; 2017; 2017():6732459. PubMed ID: 29065636 [TBL] [Abstract][Full Text] [Related]
9. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
10. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training. Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459 [TBL] [Abstract][Full Text] [Related]
11. Hybrid position and orientation tracking for a passive rehabilitation table-top robot. Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902 [TBL] [Abstract][Full Text] [Related]
12. Robust control of a cable-driven rehabilitation robot for lower and upper limbs. Seyfi NS; Keymasi Khalaji A ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462 [TBL] [Abstract][Full Text] [Related]
13. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study. Kamnik R; Bajd T Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459 [TBL] [Abstract][Full Text] [Related]
14. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. Vallery H; van Asseldonk EH; Buss M; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320 [TBL] [Abstract][Full Text] [Related]
15. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
16. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system. Chiang MH; Lin HT Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676 [TBL] [Abstract][Full Text] [Related]
17. Assistive Sliding Mode Control of a Rehabilitation Robot with Automatic Weight Adjustment. Hashemi A; McPhee J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4891-4896. PubMed ID: 34892305 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
19. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
20. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]