These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21097229)

  • 1. Incremental SSVEP analysis for BCI implementation.
    Torres Müller SM; Freire Bastos-Filho T; Sarcinelli-Filho M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3333-6. PubMed ID: 21097229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs.
    Lin Z; Zhang C; Wu W; Gao X
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2610-4. PubMed ID: 17152442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSVEP-based Bremen-BCI interface--boosting information transfer rates.
    Volosyak I
    J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSVEP-BCI implementation for 37-40 Hz frequency range.
    Müller SM; Diez PF; Bastos-Filho TF; Sarcinelli-Filho M; Mut V; Laciar E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6352-5. PubMed ID: 22255791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-command SSVEP-based BCI system via single flickering frequency half-field stimulation pattern.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1101-4. PubMed ID: 22254506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SSVEP topographic scalp maps by canonical correlation analysis.
    Bin G; Lin Z; Gao X; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3759-62. PubMed ID: 19163529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs.
    Lin Z; Zhang C; Wu W; Gao X
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 2):1172-6. PubMed ID: 17549911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface.
    Oehler M; Neumann P; Becker M; Curio G; Schilling M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4495-8. PubMed ID: 19163714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual P300-based BCI to steer a wheelchair: a Bayesian approach.
    Pires G; Castelo-Branco M; Nunes U
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():658-61. PubMed ID: 19162741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical VEP-based brain-computer interface.
    Wang Y; Wang R; Gao X; Hong B; Gao S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):234-9. PubMed ID: 16792302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harmonic coupling of steady-state visual evoked potentials.
    Krusienski DJ; Allison BZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5037-40. PubMed ID: 19163848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
    Maye A; Zhang D; Engel AK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1026-1036. PubMed ID: 28459691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and phase mixed coding in SSVEP-based brain--computer interface.
    Jia C; Gao X; Hong B; Gao S
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):200-6. PubMed ID: 20729160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A half-field stimulation pattern for SSVEP-based brain-computer interface.
    Yan Z; Gao X; Bin G; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6461-4. PubMed ID: 19964433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.