These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21097235)

  • 1. Inductive tongue control of powered wheelchairs.
    Lund ME; Christiensen HV; Caltenco HA; Lontis ER; Bentsen B; Andreasen Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3361-4. PubMed ID: 21097235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of wireless inductive tongue computer interface for control of computers and assistive devices.
    Lontis ER; Lund ME; Christensen HV; Bentsen B; Gaihede M; Caltenco HA; Andreasen Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3365-8. PubMed ID: 21097236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An arch-shaped intraoral tongue drive system with built-in tongue-computer interfacing SoC.
    Park H; Ghovanloo M
    Sensors (Basel); 2014 Nov; 14(11):21565-87. PubMed ID: 25405513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors.
    Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1221-1229. PubMed ID: 28113771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speaking Ability while Using an Inductive Tongue-Computer Interface for Individuals with Tetraplegia: Talking and Driving a Powered Wheelchair - a Case Study.
    Struijk LNSA; Bentsen B; Gaihede M; Lontis R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2483-2486. PubMed ID: 30440911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.
    Huo X; Ghovanloo M
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1719-26. PubMed ID: 19362901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs.
    Kim J; Huo X; Minocha J; Holbrook J; Laumann A; Ghovanloo M
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1787-96. PubMed ID: 22531737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.
    Huo X; Wang J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4199-202. PubMed ID: 19163638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the Tongue-Drive System Using a Computer, a Smartphone, and a Powered-Wheelchair by People With Tetraplegia.
    Kim J; Park H; Bruce J; Rowles D; Holbrook J; Nardone B; West DP; Laumann A; Roth EJ; Ghovanloo M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):68-78. PubMed ID: 25730827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary assessment of Tongue Drive System in medium term usage for computer access and wheelchair control.
    Yousefi B; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5766-9. PubMed ID: 22255650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy.
    Cheng C; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():563-6. PubMed ID: 19964478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistopalatography as an assistive technology for users with spinal cord injuries.
    Horne R; Kelly S; Sharp P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4367-70. PubMed ID: 26737262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Fitts's law for evaluating Tongue Drive System as a pointing device for computer access.
    Yousefi B; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4403-6. PubMed ID: 21096460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for mouse and keyboard emulation in a tongue control system.
    Lund ME; Caltenco HA; Lontis ER; Christiensen HV; Bentsen B; Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():815-8. PubMed ID: 19964489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a smart wheelchair as a gaming device for floor-projected games: a mixed-reality environment for training powered-wheelchair driving skills.
    Secoli R; Zondervan D; Reinkensmeyer D
    Stud Health Technol Inform; 2012; 173():450-6. PubMed ID: 22357035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of an alternative wheelchair control system for dexterity disabilities.
    Oliver S; Khan A
    Healthc Technol Lett; 2019 Aug; 6(4):109-114. PubMed ID: 31531225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an exercise-enabling control interface for powered wheelchair users: a feasibility study with Duchenne muscular dystrophy.
    Lobo-Prat J; Enkaoua A; Rodríguez-Fernández A; Sharifrazi N; Medina-Cantillo J; Font-Llagunes JM; Torras C; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2020 Oct; 17(1):142. PubMed ID: 33115472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.