BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21097247)

  • 1. An intention driven hand functions task training robotic system.
    Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
    Godfrey SB; Schabowsky CN; Holley RJ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4485-8. PubMed ID: 21095777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A haptic knob for rehabilitation of hand function.
    Lambercy O; Dovat L; Gassert R; Burdet E; Teo CL; Milner T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):356-66. PubMed ID: 17894268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2077-80. PubMed ID: 22254746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic approaches for rehabilitation of hand function after stroke.
    Lum PS; Godfrey SB; Brokaw EB; Holley RJ; Nichols D
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S242-54. PubMed ID: 23080040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully embedded myoelectric control for a wearable robotic hand orthosis.
    Ryser F; Butzer T; Held JP; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():615-621. PubMed ID: 28813888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-DOF robotic exoskeleton interface for hand motion assistance.
    Iqbal J; Tsagarakis NG; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source of work area reduction following hemiparetic stroke and preliminary intervention using the ACT3D system.
    Sukal TM; Ellis MD; Dewald JP
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():177-80. PubMed ID: 17946798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.