These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21097247)

  • 21. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation.
    Liu W; Mukherjee M; Tsaur Y; Kim SH; Liu H; Natarajan P; Agah A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5965-8. PubMed ID: 19964884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feedback control of biomimetic exotendon device for hand rehabilitation in stroke.
    Kim DH; Lee SW; Park HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3618-21. PubMed ID: 25570774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of a novel robotic interface to study finger motor control.
    Cruz EG; Kamper DG
    Ann Biomed Eng; 2010 Feb; 38(2):259-68. PubMed ID: 19937469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance.
    Heung KHL; Tang ZQ; Ho L; Tung M; Li Z; Tong RKY
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():65-70. PubMed ID: 31374608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Task-oriented rehabilitation robotics.
    Schweighofer N; Choi Y; Winstein C; Gordon J
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S270-9. PubMed ID: 23080042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.
    Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M
    Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option?
    Volpe BT; Krebs HI; Hogan N
    Curr Opin Neurol; 2001 Dec; 14(6):745-52. PubMed ID: 11723383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.
    Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS
    Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.