These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21097287)

  • 1. STFT-based denoising of biomechanical impact signals.
    Hon TK; Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4036-9. PubMed ID: 21097287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple filter circuit for denoising biomechanical impact signals.
    Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6938-41. PubMed ID: 19964461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the second derivative of kinematic impact signals using fractional fourier domain filtering.
    Georgakis A; Subramaniam SR
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):996-1004. PubMed ID: 19272899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional fourier-based filter for denoising elastograms.
    Subramaniam SR; Hon TK; Georgakis A; Papadakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4028-31. PubMed ID: 21097285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of the Intersection of Confidence Intervals Rule.
    Lopac N; Lerga J; Cuoco E
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative.
    Giakas G; Stergioulas LK; Vourdas A
    J Biomech; 2000 May; 33(5):567-74. PubMed ID: 10708777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for Doppler blood flow measurement.
    McNamara DM; Goli A; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1883-5. PubMed ID: 19163056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-spectral methods for processing speech.
    Nelson DJ
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2575-92. PubMed ID: 11757947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denoising of polychromatic CT images based on their own noise properties.
    Kim JH; Chang Y; Ra JB
    Med Phys; 2016 May; 43(5):2251. PubMed ID: 27147337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A novel analyzing method for the signal denoising of DNA sequencing].
    Zheng H; Wang LQ; Shi Y; Wang J; Lu ZK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1126-9. PubMed ID: 18720816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI denoising by NeighShrink based on chi-square unbiased risk estimation.
    Zhang CJ; Huang XY; Fang MC
    Artif Intell Med; 2019 Jun; 97():131-142. PubMed ID: 30712985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denoising of the uterine EHG by an undecimated wavelet transform.
    Carré P; Leman H; Fernandez C; Marque C
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1104-13. PubMed ID: 9735560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the proposed hybrid denoising technique to overcome over-filtering issue.
    Kushwaha S; Singh RK
    Biomed Tech (Berl); 2019 Sep; 64(5):601-618. PubMed ID: 30978168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for Estimating Time of Flight of ultrasonic echoes through short-time Fourier transforms.
    Lu Z; Ma F; Yang C; Chang M
    Ultrasonics; 2020 Apr; 103():106104. PubMed ID: 32062180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting time-dependent coherence between non-stationary electrophysiological signals--a combined statistical and time-frequency approach.
    Zhan Y; Halliday D; Jiang P; Liu X; Feng J
    J Neurosci Methods; 2006 Sep; 156(1-2):322-32. PubMed ID: 16563517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
    Nisar S; Khan OU; Tariq M
    Comput Intell Neurosci; 2016; 2016():6172453. PubMed ID: 27642291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.