BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21097520)

  • 1. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression.
    Kaspar JW; Jaiswal AK
    FASEB J; 2011 Mar; 25(3):1076-87. PubMed ID: 21097520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2.
    Jain AK; Jaiswal AK
    J Biol Chem; 2007 Jun; 282(22):16502-10. PubMed ID: 17403689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression.
    Kaspar JW; Jaiswal AK
    J Biol Chem; 2010 Jan; 285(1):153-62. PubMed ID: 19897490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2.
    Jain AK; Jaiswal AK
    J Biol Chem; 2006 Apr; 281(17):12132-42. PubMed ID: 16513647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression.
    Niture SK; Jain AK; Shelton PM; Jaiswal AK
    J Biol Chem; 2011 Aug; 286(33):28821-28834. PubMed ID: 21690096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nrf2 signaling and cell survival.
    Niture SK; Kaspar JW; Shen J; Jaiswal AK
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):37-42. PubMed ID: 19538984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHLPP2 down regulation influences nuclear Nrf2 stability via Akt-1/Gsk3β/Fyn kinase axis in acetaminophen induced oxidative renal toxicity: Protection accorded by morin.
    Mathur A; Rizvi F; Kakkar P
    Food Chem Toxicol; 2016 Mar; 89():19-31. PubMed ID: 26767949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3β/Fyn kinase axis during oxidative hepatocellular toxicity.
    Rizvi F; Shukla S; Kakkar P
    Cell Death Dis; 2014 Mar; 5(3):e1153. PubMed ID: 24675471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.
    He X; Chen MG; Lin GX; Ma Q
    J Biol Chem; 2006 Aug; 281(33):23620-31. PubMed ID: 16785233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Nrf2-an update.
    Niture SK; Khatri R; Jaiswal AK
    Free Radic Biol Med; 2014 Jan; 66():36-44. PubMed ID: 23434765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z; Wu T; Zhao F; Lau A; Birch CM; Zhang DD
    Mol Cell Biol; 2011 May; 31(9):1800-11. PubMed ID: 21383067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear import and export signals in control of Nrf2.
    Jain AK; Bloom DA; Jaiswal AK
    J Biol Chem; 2005 Aug; 280(32):29158-68. PubMed ID: 15901726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression.
    Bloom DA; Jaiswal AK
    J Biol Chem; 2003 Nov; 278(45):44675-82. PubMed ID: 12947090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90 interaction with INrf2(Keap1) mediates stress-induced Nrf2 activation.
    Niture SK; Jaiswal AK
    J Biol Chem; 2010 Nov; 285(47):36865-75. PubMed ID: 20864537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fyn inhibition by cycloalkane-fused 1,2-dithiole-3-thiones enhances antioxidant capacity and protects mitochondria from oxidative injury.
    Koo JH; Lee WH; Lee CG; Kim SG
    Mol Pharmacol; 2012 Jul; 82(1):27-36. PubMed ID: 22474169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance.
    Niture SK; Jain AK; Jaiswal AK
    J Cell Sci; 2009 Dec; 122(Pt 24):4452-64. PubMed ID: 19920073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells.
    Liang F; Cao W; Huang Y; Fang Y; Cheng Y; Pan S; Xu X
    Biofactors; 2019 Jul; 45(4):563-574. PubMed ID: 31131946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.