These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21097600)

  • 1. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.
    Quaranta D; Krans T; Espírito Santo C; Elowsky CG; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Jan; 77(2):416-26. PubMed ID: 21097600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.
    Zheng S; Chang W; Li C; Lou H
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 27189057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial killing by dry metallic copper surfaces.
    Espírito Santo C; Lam EW; Elowsky CG; Quaranta D; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Feb; 77(3):794-802. PubMed ID: 21148701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.
    Santo CE; Quaranta D; Grass G
    Microbiologyopen; 2012 Mar; 1(1):46-52. PubMed ID: 22950011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Candida albicans CTR1 gene encodes a functional copper transporter.
    Marvin ME; Williams PH; Cashmore AM
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1461-1474. PubMed ID: 12777486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological basis of copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants.
    Wang X; Okonkwo O; Kebaara BW
    Yeast; 2013 May; 30(5):179-90. PubMed ID: 23450501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity.
    Riggle PJ; Kumamoto CA
    J Bacteriol; 2000 Sep; 182(17):4899-905. PubMed ID: 10940034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces.
    Mathews S; Kumar R; Solioz M
    Appl Environ Microbiol; 2015 Sep; 81(18):6399-403. PubMed ID: 26150470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis.
    Ooi CE; Rabinovich E; Dancis A; Bonifacino JS; Klausner RD
    EMBO J; 1996 Jul; 15(14):3515-23. PubMed ID: 8670854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling and copper toxicity in Saccharomyces cerevisiae cells.
    Ruta LL; Popa CV; Nicolau I; Farcasanu IC
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24514-24526. PubMed ID: 27094270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of bacteria on metallic copper surfaces in a hospital trial.
    Mikolay A; Huggett S; Tikana L; Grass G; Braun J; Nies DH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1875-9. PubMed ID: 20449737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.
    Coste AT; Ramsdale M; Ischer F; Sanglard D
    Microbiology (Reading); 2008 May; 154(Pt 5):1491-1501. PubMed ID: 18451058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.
    Hong R; Kang TY; Michels CA; Gadura N
    Appl Environ Microbiol; 2012 Mar; 78(6):1776-84. PubMed ID: 22247141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The high copper tolerance of Candida albicans is mediated by a P-type ATPase.
    Weissman Z; Berdicevsky I; Cavari BZ; Kornitzer D
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3520-5. PubMed ID: 10737803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae.
    Talibi D; Raymond M
    J Bacteriol; 1999 Jan; 181(1):231-40. PubMed ID: 9864335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans.
    Edgerton M; Koshlukova SE; Lo TE; Chrzan BG; Straubinger RM; Raj PA
    J Biol Chem; 1998 Aug; 273(32):20438-47. PubMed ID: 9685398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Ogg1 repair on the genetic stability of ccc2 mutant of Saccharomyces cerevisiae chemically challenged with 4-nitroquinoline-1-oxide (4-NQO).
    da Silva CR; Almeida GS; Caldeira-de-Araújo A; Leitão AC; de Pádula M
    Mutagenesis; 2016 Jan; 31(1):107-14. PubMed ID: 26275420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast.
    Yamawaki C; Oyama M; Yamaguchi Y; Ogita A; Tanaka T; Fujita KI
    Lett Appl Microbiol; 2019 Jan; 68(1):17-23. PubMed ID: 30276838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.
    Adle DJ; Sinani D; Kim H; Lee J
    J Biol Chem; 2007 Jan; 282(2):947-55. PubMed ID: 17107946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.