BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21097875)

  • 1. Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates.
    Radisky ES; Lee JM; Lu CJ; Koshland DE
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6835-40. PubMed ID: 16636277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Relay Without Proton Transfer: Coupling of Two Short Hydrogen Bonds via Imidazole in Models of Catalytic Triad of Serine Protease Active Site.
    Tupikina EY; Sigalov MV; Alkhuder O; Tolstoy PM
    Chemphyschem; 2024 Jun; 25(12):e202300970. PubMed ID: 38563616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct proton magnetic resonance determination of the pKa of the active center histidine in thiolsubtilisin.
    Kahyaoglu A; Jordan F
    Protein Sci; 2002 Apr; 11(4):965-73. PubMed ID: 11910039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of HIV-1 protease in situ product complex and observation of a low-barrier hydrogen bond between catalytic aspartates.
    Das A; Prashar V; Mahale S; Serre L; Ferrer JL; Hosur MV
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18464-9. PubMed ID: 17116869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the activation and inhibition of histo-aspartic protease from Plasmodium falciparum.
    Bhaumik P; Xiao H; Hidaka K; Gustchina A; Kiso Y; Yada RY; Wlodawer A
    Biochemistry; 2011 Oct; 50(41):8862-79. PubMed ID: 21928835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state.
    Blankenship E; Vukoti K; Miyagi M; Lodowski DT
    Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):833-40. PubMed ID: 24598752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
    Wu XH; Zhang H; Wu YD
    Proteins; 2010 Apr; 78(5):1186-94. PubMed ID: 19927323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2015 Jan; 16(1):1613-26. PubMed ID: 25588215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.
    Debler EW; Müller R; Hilvert D; Wilson IA
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18539-44. PubMed ID: 19846764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleolar Essential Protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study.
    Jedrzejewski M; Belza B; Lewandowska I; Sadlej M; Perlinska AP; Augustyniak R; Christian T; Hou YM; Kalek M; Sulkowska JI
    Comput Struct Biotechnol J; 2023; 21():3999-4008. PubMed ID: 37649713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity.
    Kozlova MI; Shalaeva DN; Dibrova DV; Mulkidjanian AY
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Protonation States of In-Pathway Residues can Alter Ligand Binding Pathways Obtained From Spontaneous Binding Molecular Dynamics Simulations.
    Girame H; Garcia-Borràs M; Feixas F
    Front Mol Biosci; 2022; 9():922361. PubMed ID: 35860361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the structural and chemical features of biological short hydrogen bonds.
    Zhou S; Wang L
    Chem Sci; 2019 Sep; 10(33):7734-7745. PubMed ID: 31588321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypsinogen activation as observed in accelerated molecular dynamics simulations.
    Boechi L; Pierce L; Komives EA; McCammon JA
    Protein Sci; 2014 Nov; 23(11):1550-8. PubMed ID: 25131668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad.
    Buller AR; Townsend CA
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E653-61. PubMed ID: 23382230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of bacterial defense against g-type lysozyme-based innate immunity.
    Leysen S; Vanderkelen L; Weeks SD; Michiels CW; Strelkov SV
    Cell Mol Life Sci; 2013 Mar; 70(6):1113-22. PubMed ID: 23086131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of threonine 195 and the S1 subsite in functional trypsin variants.
    Gokey T; Baird TT; Guliaev AB
    J Mol Model; 2012 Nov; 18(11):4941-54. PubMed ID: 22872415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monospecific inhibitors show that both mannan-binding lectin-associated serine protease-1 (MASP-1) and -2 Are essential for lectin pathway activation and reveal structural plasticity of MASP-2.
    Héja D; Harmat V; Fodor K; Wilmanns M; Dobó J; Kékesi KA; Závodszky P; Gál P; Pál G
    J Biol Chem; 2012 Jun; 287(24):20290-300. PubMed ID: 22511776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action.
    Wahlgren WY; Pál G; Kardos J; Porrogi P; Szenthe B; Patthy A; Gráf L; Katona G
    J Biol Chem; 2011 Feb; 286(5):3587-96. PubMed ID: 21097875
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.