BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 21097884)

  • 1. Cooperation of RAD51 and RAD54 in regression of a model replication fork.
    Bugreev DV; Rossi MJ; Mazin AV
    Nucleic Acids Res; 2011 Mar; 39(6):2153-64. PubMed ID: 21097884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strand invasion by HLTF as a mechanism for template switch in fork rescue.
    Burkovics P; Sebesta M; Balogh D; Haracska L; Krejci L
    Nucleic Acids Res; 2014 Feb; 42(3):1711-20. PubMed ID: 24198246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rad51 protein stimulates the branch migration activity of Rad54 protein.
    Rossi MJ; Mazin AV
    J Biol Chem; 2008 Sep; 283(36):24698-706. PubMed ID: 18617519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially.
    Gupta S; Yeeles JT; Marians KJ
    J Biol Chem; 2014 Oct; 289(41):28376-87. PubMed ID: 25138216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops.
    Chappidi N; Nascakova Z; Boleslavska B; Zellweger R; Isik E; Andrs M; Menon S; Dobrovolna J; Balbo Pogliano C; Matos J; Porro A; Lopes M; Janscak P
    Mol Cell; 2020 Feb; 77(3):528-541.e8. PubMed ID: 31759821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad54 protein promotes branch migration of Holliday junctions.
    Bugreev DV; Mazina OM; Mazin AV
    Nature; 2006 Aug; 442(7102):590-3. PubMed ID: 16862129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks.
    Ouyang KJ; Woo LL; Zhu J; Huo D; Matunis MJ; Ellis NA
    PLoS Biol; 2009 Dec; 7(12):e1000252. PubMed ID: 19956565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability.
    Spies J; Waizenegger A; Barton O; Sürder M; Wright WD; Heyer WD; Löbrich M
    Mol Cell; 2016 Jun; 62(6):903-917. PubMed ID: 27264870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins.
    Mazina OM; Rossi MJ; Deakyne JS; Huang F; Mazin AV
    J Biol Chem; 2012 Apr; 287(15):11820-32. PubMed ID: 22356911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression of replication forks stalled by leading-strand template damage: II. Regression by RecA is inhibited by SSB.
    Gupta S; Yeeles JT; Marians KJ
    J Biol Chem; 2014 Oct; 289(41):28388-98. PubMed ID: 25138217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress.
    Piwko W; Mlejnkova LJ; Mutreja K; Ranjha L; Stafa D; Smirnov A; Brodersen MM; Zellweger R; Sturzenegger A; Janscak P; Lopes M; Peter M; Cejka P
    EMBO J; 2016 Dec; 35(23):2584-2601. PubMed ID: 27797818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From strand exchange to branch migration; bypassing of non-homologous sequences by human Rad51 and Rad54.
    Urena DE; Zhang Z; Tsai YC; Wang YZ; Chen J
    J Mol Biol; 2011 Jan; 405(1):77-91. PubMed ID: 21056573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest.
    Otterlei M; Bruheim P; Ahn B; Bussen W; Karmakar P; Baynton K; Bohr VA
    J Cell Sci; 2006 Dec; 119(Pt 24):5137-46. PubMed ID: 17118963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions.
    Goyal N; Rossi MJ; Mazina OM; Chi Y; Moritz RL; Clurman BE; Mazin AV
    Nat Commun; 2018 Jan; 9(1):34. PubMed ID: 29295984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA2 drives processing and restart of reversed replication forks in human cells.
    Thangavel S; Berti M; Levikova M; Pinto C; Gomathinayagam S; Vujanovic M; Zellweger R; Moore H; Lee EH; Hendrickson EA; Cejka P; Stewart S; Lopes M; Vindigni A
    J Cell Biol; 2015 Mar; 208(5):545-62. PubMed ID: 25733713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.
    Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T
    Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fork in the road: Where homologous recombination and stalled replication fork protection part ways.
    Tye S; Ronson GE; Morris JR
    Semin Cell Dev Biol; 2021 May; 113():14-26. PubMed ID: 32653304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RADX Modulates RAD51 Activity to Control Replication Fork Protection.
    Bhat KP; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D
    Cell Rep; 2018 Jul; 24(3):538-545. PubMed ID: 30021152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Bloom's syndrome helicase can promote the regression of a model replication fork.
    Ralf C; Hickson ID; Wu L
    J Biol Chem; 2006 Aug; 281(32):22839-46. PubMed ID: 16766518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.