These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21098430)

  • 1. SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures.
    Wang HQ; Tuominen LK; Tsai CJ
    Bioinformatics; 2011 Jan; 27(2):225-31. PubMed ID: 21098430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures.
    Lu X; Perkins DL
    BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data.
    Biswas A; Chakraborty S; Baruah VJ
    Stat Methods Med Res; 2022 May; 31(5):917-927. PubMed ID: 35133933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CorSig: a general framework for estimating statistical significance of correlation and its application to gene co-expression analysis.
    Wang HQ; Tsai CJ
    PLoS One; 2013; 8(10):e77429. PubMed ID: 24194884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of false discovery proportion under general dependence.
    Pawitan Y; Calza S; Ploner A
    Bioinformatics; 2006 Dec; 22(24):3025-31. PubMed ID: 17046978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dependence in high-dimensional multiple testing problems.
    Kim KI; van de Wiel MA
    BMC Bioinformatics; 2008 Feb; 9():114. PubMed ID: 18298808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving false discovery rate estimation.
    Pounds S; Cheng C
    Bioinformatics; 2004 Jul; 20(11):1737-45. PubMed ID: 14988112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bias in error estimation when using cross-validation for model selection.
    Varma S; Simon R
    BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ConReg-R: Extrapolative recalibration of the empirical distribution of p-values to improve false discovery rate estimates.
    Li J; Paramita P; Choi KP; Karuturi RK
    Biol Direct; 2011 May; 6():27. PubMed ID: 21595983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust estimation of the false discovery rate.
    Pounds S; Cheng C
    Bioinformatics; 2006 Aug; 22(16):1979-87. PubMed ID: 16777905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data.
    Lai Y
    Biostatistics; 2007 Oct; 8(4):744-55. PubMed ID: 17244594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the proportion of equivalently expressed genes in microarray data based on transformed test statistics.
    Jiao S; Zhang S
    J Comput Biol; 2010 Feb; 17(2):177-87. PubMed ID: 20078228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation.
    Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P;
    BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias in the estimation of false discovery rate in microarray studies.
    Pawitan Y; Murthy KR; Michiels S; Ploner A
    Bioinformatics; 2005 Oct; 21(20):3865-72. PubMed ID: 16105901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of false discovery rate using sequential permutation p-values.
    Bancroft T; Du C; Nettleton D
    Biometrics; 2013 Mar; 69(1):1-7. PubMed ID: 23379645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post hoc power estimation in large-scale multiple testing problems.
    Zehetmayer S; Posch M
    Bioinformatics; 2010 Apr; 26(8):1050-6. PubMed ID: 20189938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional local false discovery rate for microarray studies.
    Ploner A; Calza S; Gusnanto A; Pawitan Y
    Bioinformatics; 2006 Mar; 22(5):556-65. PubMed ID: 16368770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative null distributions corresponding to tests of differential expression in the Golden Spike dataset are intensity dependent.
    Gaile DP; Miecznikowski JC
    BMC Genomics; 2007 Apr; 8():105. PubMed ID: 17445265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A censored beta mixture model for the estimation of the proportion of non-differentially expressed genes.
    Markitsis A; Lai Y
    Bioinformatics; 2010 Mar; 26(5):640-6. PubMed ID: 20080506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.