These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21098438)

  • 41. Coronary stents: historical development, current status and future directions.
    Iqbal J; Gunn J; Serruys PW
    Br Med Bull; 2013; 106():193-211. PubMed ID: 23532779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absorb bioresorbable stents for the treatment of coronary artery disease.
    Kočka V; Toušek P; Widimský P
    Expert Rev Med Devices; 2015; 12(5):545-57. PubMed ID: 26305838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical coherence tomography follow-up after bioresorbable in metallic and metallic in bioresorbable stenting: tackling in-stent restenosis in the era of bioresorbable vascular scaffolds.
    Frangieh AH; Templin C; Binder RK
    Eur Heart J; 2015 Aug; 36(32):2183. PubMed ID: 26040803
    [No Abstract]   [Full Text] [Related]  

  • 44. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold.
    Karanasos A; Simsek C; Gnanadesigan M; van Ditzhuijzen NS; Freire R; Dijkstra J; Tu S; Van Mieghem N; van Soest G; de Jaegere P; Serruys PW; Zijlstra F; van Geuns RJ; Regar E
    J Am Coll Cardiol; 2014 Dec; 64(22):2343-56. PubMed ID: 25465421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioresorbable vascular scaffolds in left main coronary artery disease.
    Everaert B; Capranzano P; Tamburino C; Seth A; van Geuns RJ
    EuroIntervention; 2015; 11 Suppl V():V135-8. PubMed ID: 25983148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-month healing evaluation of an everolimus Pt-Cr DES with erodible polymer and two bioresorbable scaffolds implanted in the same vessel of the same patient.
    de la Torre Hernandez JM; Lee DH; Garcia Camarero T; Sainz Laso F; Toranzo I; Goicolea L; Zueco J
    EuroIntervention; 2015 Apr; 10(12):e1-2. PubMed ID: 25912644
    [No Abstract]   [Full Text] [Related]  

  • 47. Shrinking the Supply Chain for Implantable Coronary Stent Devices.
    Moore SS; O'Sullivan KJ; Verdecchia F
    Ann Biomed Eng; 2016 Feb; 44(2):497-507. PubMed ID: 26438449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioresorbable scaffolding after drug-coated balloons: a new chapter of the "leave nothing behind" saga.
    Cortese B; Sebik R; Seregni R; Silva PL
    Int J Cardiol; 2014 May; 173(3):e67-9. PubMed ID: 24704408
    [No Abstract]   [Full Text] [Related]  

  • 49. [Development of new skin substitutes based on bioresorbable polymer for treatment of severe skin defects].
    Garric X; Vert M; Molès JP
    Ann Pharm Fr; 2008; 66(5-6):313-8. PubMed ID: 19061732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural stem cells: targeting glioma in 3-dimensions.
    Hofstetter CP; Boockvar JA
    Neurosurgery; 2010 Jun; 66(6):N15. PubMed ID: 20495412
    [No Abstract]   [Full Text] [Related]  

  • 51. [1st heart catheter, 1st coronary dilatation, 1st resorbable stent. Renewed breakthroughs in German research].
    MMW Fortschr Med; 2005 Apr; 147(15):16. PubMed ID: 15884497
    [No Abstract]   [Full Text] [Related]  

  • 52. Bioresorbable Stents: Is This Where We Are Headed?
    Wayangankar SA; Ellis SG
    Prog Cardiovasc Dis; 2015; 58(3):342-55. PubMed ID: 26319497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation.
    Bozic KJ; Perez LE; Wilson DR; Fitzgibbons PG; Jupiter JB
    J Hand Surg Am; 2001 Jul; 26(4):755-61. PubMed ID: 11466654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications.
    Bourantas CV; Onuma Y; Farooq V; Zhang Y; Garcia-Garcia HM; Serruys PW
    Int J Cardiol; 2013 Jul; 167(1):11-21. PubMed ID: 22748288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent.
    Ormiston JA; Webster MW; Armstrong G
    Catheter Cardiovasc Interv; 2007 Jan; 69(1):128-31. PubMed ID: 17139655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Structure and function of the fully bioresorbable vascular scaffold].
    De Servi S
    G Ital Cardiol (Rome); 2013 Sep; 14(9 Suppl 1):4S-7S. PubMed ID: 24084667
    [No Abstract]   [Full Text] [Related]  

  • 57. Initial experience of percutaneous coronary intervention in bifurcations with bioresorbable vascular scaffolds using different techniques--insights from optical coherence tomography.
    Attizzani GF; Ohno Y; Capranzano P; La Manna A; Francaviglia B; Grasso C; Sgroi C; Tamburino C; Longo G; Fujino Y; Capodanno D; Tamburino C
    Int J Cardiol; 2013 Dec; 170(2):e33-5. PubMed ID: 24210418
    [No Abstract]   [Full Text] [Related]  

  • 58. Bioresorbable scaffolds for coronary artery disease: current status and future prospective.
    Zhang Y; Gao R; Xu B; Cummins P; Serruys PW
    Chin Med J (Engl); 2014; 127(6):1141-8. PubMed ID: 24622448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model of polymer degradation and erosion for finite element analysis of bioresorbable implants.
    Niu W; Pan J
    J Mech Behav Biomed Mater; 2020 Dec; 112():104022. PubMed ID: 32853863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioresorbable vascular scaffolds: the shape of things to come?
    Safian RD
    Catheter Cardiovasc Interv; 2012 Feb; 79(2):229-30. PubMed ID: 22271553
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.