These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21098850)

  • 1. The stripe artifact in transcranial ultrasound imaging.
    Vignon F; Shi WT; Yin X; Hoelscher T; Powers JE
    J Ultrasound Med; 2010 Dec; 29(12):1779-86. PubMed ID: 21098850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles.
    Jing B; Strassle Rojas S; Lindsey BD
    Med Phys; 2023 May; 50(5):3092-3102. PubMed ID: 36810723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques.
    Yousefi A; Goertz DE; Hynynen K
    IEEE Trans Med Imaging; 2009 May; 28(5):763-74. PubMed ID: 19150789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2021 Sep; 47(9):2734-2748. PubMed ID: 34140169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing transcranial ultrasound delivery at large incident angles by leveraging cranial leaky guided wave dispersion.
    Mazzotti M; Kohtanen E; Erturk A; Ruzzene M
    Ultrasonics; 2023 Feb; 128():106882. PubMed ID: 36402116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer-controlled ultrasound pulser-receiver system for transskull fluid detection using a shear wave transmission technique.
    Tang SC; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1772-83. PubMed ID: 17941383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substantial fluctuation of acoustic intensity transmittance through a bone-phantom plate and its equalization by modulation of ultrasound frequency.
    Saito O; Wang Z; Mitsumura H; Ogawa T; Iguchi Y; Yokoyama M
    Ultrasonics; 2015 May; 59():94-101. PubMed ID: 25702201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial sound field characterization.
    Hölscher T; Wilkening WG; Molkenstruck S; Voit H; Koch C
    Ultrasound Med Biol; 2008 Jun; 34(6):973-80. PubMed ID: 18255216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Characterization of an Acoustically and Structurally Matched 3-D-Printed Model for Transcranial Ultrasound Imaging.
    Bai C; Ji M; Bouakaz A; Zong Y; Wan M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):741-748. PubMed ID: 29733278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach.
    Du B; Wang J; Zheng H; Xiao C; Fang S; Lu M; Mao R
    Comput Methods Programs Biomed; 2020 Apr; 186():105308. PubMed ID: 31978869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model.
    Pfaffenberger S; Devcic-Kuhar B; Kollmann C; Kastl SP; Kaun C; Speidl WS; Weiss TW; Demyanets S; Ullrich R; Sochor H; Wöber C; Zeitlhofer J; Huber K; Gröschl M; Benes E; Maurer G; Wojta J; Gottsauner-Wolf M
    Stroke; 2005 Jan; 36(1):124-8. PubMed ID: 15591211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image guidance for rapid temporal acoustic window localisation prior to transcranial Doppler ultrasound in the neurosurgical patient.
    Lewis PM; Goldschlager T; Rosenfeld JV
    Br J Neurosurg; 2010 Jun; 24(3):303-5. PubMed ID: 20465462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of temporal bone on transcranial Doppler ultrasound beam shape.
    Deverson S; Evans DH; Bouch DC
    Ultrasound Med Biol; 2000 Feb; 26(2):239-44. PubMed ID: 10722913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic properties across the human skull.
    Riis TS; Webb TD; Kubanek J
    Ultrasonics; 2022 Feb; 119():106591. PubMed ID: 34717144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local frequency dependence in transcranial ultrasound transmission.
    White PJ; Clement GT; Hynynen K
    Phys Med Biol; 2006 May; 51(9):2293-305. PubMed ID: 16625043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.