BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21098881)

  • 1. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network.
    Jiang JQ; Dress AW; Chen M
    J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Align human interactome with phenome to identify causative genes and networks underlying disease families.
    Wu X; Liu Q; Jiang R
    Bioinformatics; 2009 Jan; 25(1):98-104. PubMed ID: 19010805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OMiR: Identification of associations between OMIM diseases and microRNAs.
    Rossi S; Tsirigos A; Amoroso A; Mascellani N; Rigoutsos I; Calin GA; Volinia S
    Genomics; 2011 Feb; 97(2):71-6. PubMed ID: 20974243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.
    Gefen A; Cohen R; Birk OS
    Hum Mutat; 2010 Mar; 31(3):229-36. PubMed ID: 20052752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modular nature of genetic diseases.
    Oti M; Brunner HG
    Clin Genet; 2007 Jan; 71(1):1-11. PubMed ID: 17204041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans.
    Lee I; Lehner B; Crombie C; Wong W; Fraser AG; Marcotte EM
    Nat Genet; 2008 Feb; 40(2):181-8. PubMed ID: 18223650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering disease-genes by topological features in human protein-protein interaction network.
    Xu J; Li Y
    Bioinformatics; 2006 Nov; 22(22):2800-5. PubMed ID: 16954137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human phenome-interactome network of protein complexes implicated in genetic disorders.
    Lage K; Karlberg EO; Størling ZM; Olason PI; Pedersen AG; Rigina O; Hinsby AM; Tümer Z; Pociot F; Tommerup N; Moreau Y; Brunak S
    Nat Biotechnol; 2007 Mar; 25(3):309-16. PubMed ID: 17344885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From phenotype to gene: detecting disease-specific gene functional modules via a text-based human disease phenotype network construction.
    Zhang S; Wu C; Li X; Chen X; Jiang W; Gong BS; Li J; Yan YQ
    FEBS Lett; 2010 Aug; 584(16):3635-43. PubMed ID: 20659468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modularity in the genetic disease-phenotype network.
    Jiang X; Liu B; Jiang J; Zhao H; Fan M; Zhang J; Fan Z; Jiang T
    FEBS Lett; 2008 Jul; 582(17):2549-54. PubMed ID: 18582463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-based methods for human disease gene prediction.
    Wang X; Gulbahce N; Yu H
    Brief Funct Genomics; 2011 Sep; 10(5):280-93. PubMed ID: 21764832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A text-mining analysis of the human phenome.
    van Driel MA; Bruggeman J; Vriend G; Brunner HG; Leunissen JA
    Eur J Hum Genet; 2006 May; 14(5):535-42. PubMed ID: 16493445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
    Xie M; Xu Y; Zhang Y; Hwang T; Kuang R
    PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update of the G2D tool for prioritization of gene candidates to inherited diseases.
    Perez-Iratxeta C; Bork P; Andrade-Navarro MA
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W212-6. PubMed ID: 17478516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.