These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 21098955)
1. Vortexlet models of flapping flexible wings show tuning for force production and control. Mountcastle AM; Daniel TL Bioinspir Biomim; 2010 Dec; 5(4):045005. PubMed ID: 21098955 [TBL] [Abstract][Full Text] [Related]
2. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Shang JK; Combes SA; Finio BM; Wood RJ Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572 [TBL] [Abstract][Full Text] [Related]
3. Distributed power and control actuation in the thoracic mechanics of a robotic insect. Finio BM; Wood RJ Bioinspir Biomim; 2010 Dec; 5(4):045006. PubMed ID: 21098956 [TBL] [Abstract][Full Text] [Related]
4. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Zhao L; Deng X; Sane SP Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729 [TBL] [Abstract][Full Text] [Related]
7. Effect of outer wing separation on lift and thrust generation in a flapping wing system. Mahardika N; Viet NQ; Park HC Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715 [TBL] [Abstract][Full Text] [Related]
9. Forward flight of swallowtail butterfly with simple flapping motion. Tanaka H; Shimoyama I Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782 [TBL] [Abstract][Full Text] [Related]
10. Flight mechanics of a tailless articulated wing aircraft. Paranjape AA; Chung SJ; Selig MS Bioinspir Biomim; 2011 Jun; 6(2):026005. PubMed ID: 21487173 [TBL] [Abstract][Full Text] [Related]
11. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627 [TBL] [Abstract][Full Text] [Related]
12. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing. Bahlman JW; Swartz SM; Breuer KS Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830 [TBL] [Abstract][Full Text] [Related]
14. Design and analysis of biomimetic joints for morphing of micro air vehicles. Grant DT; Abdulrahim M; Lind R Bioinspir Biomim; 2010 Dec; 5(4):045007. PubMed ID: 21098958 [TBL] [Abstract][Full Text] [Related]
15. Control for small-speed lateral flight in a model insect. Zhang YL; Sun M Bioinspir Biomim; 2011 Sep; 6(3):036003. PubMed ID: 21775781 [TBL] [Abstract][Full Text] [Related]
16. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings. Lehmann FO J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250 [TBL] [Abstract][Full Text] [Related]
17. On mathematical modelling of insect flight dynamics in the context of micro air vehicles. Zbikowski R; Ansari SA; Knowles K Bioinspir Biomim; 2006 Jun; 1(2):R26-37. PubMed ID: 17671303 [TBL] [Abstract][Full Text] [Related]
18. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
19. Flexible flapping wings with self-organized microwrinkles. Tanaka H; Okada H; Shimasue Y; Liu H Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657 [TBL] [Abstract][Full Text] [Related]
20. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Park H; Choi H Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]