These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 21098955)

  • 21. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring bird aerodynamics using radio-controlled models.
    Hoey RG
    Bioinspir Biomim; 2010 Dec; 5(4):045008. PubMed ID: 21098962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conceptual design of flapping-wing micro air vehicles.
    Whitney JP; Wood RJ
    Bioinspir Biomim; 2012 Sep; 7(3):036001. PubMed ID: 22498507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertial attitude control of a bat-like morphing-wing air vehicle.
    Colorado J; Barrientos A; Rossi C; Parra C
    Bioinspir Biomim; 2013 Mar; 8(1):016001. PubMed ID: 23211685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z; Nagy M; Leven S; Vicsek T
    Bioinspir Biomim; 2010 Dec; 5(4):045003. PubMed ID: 21098957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.
    Usherwood JR
    Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane.
    Ha NS; Jin TL; Goo NS; Park HC
    Bioinspir Biomim; 2011 Dec; 6(4):046003. PubMed ID: 21992989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First controlled vertical flight of a biologically inspired microrobot.
    Pérez-Arancibia NO; Ma KY; Galloway KC; Greenberg JD; Wood RJ
    Bioinspir Biomim; 2011 Sep; 6(3):036009. PubMed ID: 21878707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parametric structural modeling of insect wings.
    Mengesha TE; Vallance RR; Barraja M; Mittal R
    Bioinspir Biomim; 2009 Sep; 4(3):036004. PubMed ID: 19724097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible clap and fling in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2009 Oct; 212(19):3076-90. PubMed ID: 19749100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.
    Roberts B; Lind R; Chatterjee S
    Bioinspir Biomim; 2011 Jun; 6(2):026010. PubMed ID: 21558603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.