These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 21098956)

  • 21. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.
    Roberts B; Lind R; Chatterjee S
    Bioinspir Biomim; 2011 Jun; 6(2):026010. PubMed ID: 21558603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z; Nagy M; Leven S; Vicsek T
    Bioinspir Biomim; 2010 Dec; 5(4):045003. PubMed ID: 21098957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane.
    Ha NS; Jin TL; Goo NS; Park HC
    Bioinspir Biomim; 2011 Dec; 6(4):046003. PubMed ID: 21992989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial attitude control of a bat-like morphing-wing air vehicle.
    Colorado J; Barrientos A; Rossi C; Parra C
    Bioinspir Biomim; 2013 Mar; 8(1):016001. PubMed ID: 23211685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design principles for efficient, repeated jumpgliding.
    Desbiens AL; Pope MT; Christensen DL; Hawkes EW; Cutkosky MR
    Bioinspir Biomim; 2014 Jun; 9(2):025009. PubMed ID: 24851908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From falling to flying: the path to powered flight of a robotic samara nano air vehicle.
    Ulrich ER; Pines DJ; Humbert JS
    Bioinspir Biomim; 2010 Dec; 5(4):045009. PubMed ID: 21098960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On mathematical modelling of insect flight dynamics in the context of micro air vehicles.
    Zbikowski R; Ansari SA; Knowles K
    Bioinspir Biomim; 2006 Jun; 1(2):R26-37. PubMed ID: 17671303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles.
    Zhang C; Rossi C
    Bioinspir Biomim; 2017 Feb; 12(2):025005. PubMed ID: 28079026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insects in flight: direct visualization and flow measurements.
    Bomphrey RJ
    Bioinspir Biomim; 2006 Dec; 1(4):S1-9. PubMed ID: 17671312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Untethered hovering flapping flight of a 3D-printed mechanical insect.
    Richter C; Lipson H
    Artif Life; 2011; 17(2):73-86. PubMed ID: 21370958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds.
    Muijres FT; Christoffer Johansson L; Winter Y; Hedenström A
    Bioinspir Biomim; 2014 Jun; 9(2):025006. PubMed ID: 24855067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.