BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21099158)

  • 1. Degree of immobilization of synthetic RGDS(PO(3)H(2))PA peptides on titanium surfaces.
    Abe Y; Okazaki Y; Hiasa K; Hirata I; Yoshida Y; Taji T; Suzuki K; Okazaki M; Akagawa Y
    Dent Mater J; 2010 Nov; 29(6):668-72. PubMed ID: 21099158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of synthetic RGDS(PO3H2)PA peptide adsorption using a titanium surface plasmon resonance biosensor.
    Abe Y; Hiasa K; Hirata I; Okazaki Y; Nogami K; Mizumachi W; Yoshida Y; Suzuki K; Okazaki M; Akagawa Y
    J Mater Sci Mater Med; 2011 Mar; 22(3):657-61. PubMed ID: 21221730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation.
    Ryu JJ; Park K; Kim HS; Jeong CM; Huh JB
    Int J Oral Maxillofac Implants; 2013; 28(4):963-72. PubMed ID: 23869353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications.
    Fernandez-Garcia E; Chen X; Gutierrez-Gonzalez CF; Fernandez A; Lopez-Esteban S; Aparicio C
    J Dent; 2015 Sep; 43(9):1162-1174. PubMed ID: 26111926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO
    Wagstaffe M; Hussain H; Taylor M; Murphy M; Silikas N; Thomas AG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110030. PubMed ID: 31546374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface biofunctionalization by covalent co-immobilization of oligopeptides.
    Chen X; Sevilla P; Aparicio C
    Colloids Surf B Biointerfaces; 2013 Jul; 107():189-97. PubMed ID: 23500730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of grooves on adsorption of RGD tripeptide onto rutile TiO(2) (110) surface.
    Chen M; Wu C; Song D; Dong W; Li K
    J Mater Sci Mater Med; 2009 Sep; 20(9):1831-8. PubMed ID: 19418205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation.
    Zhang HP; Lu X; Leng Y; Watari F; Weng J; Feng B; Qu S
    J Biomed Mater Res A; 2011 Feb; 96(2):466-76. PubMed ID: 21171166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of RGD peptide adsorption on titanium oxide surfaces.
    Zhang HP; Lu X; Fang LM; Weng J; Huang N; Leng Y
    J Mater Sci Mater Med; 2008 Nov; 19(11):3437-41. PubMed ID: 18584123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between RGD-peptide-modified titanium and borosilicate surfaces.
    Senyah N; Hildebrand G; Liefeith K
    Anal Bioanal Chem; 2005 Nov; 383(5):758-62. PubMed ID: 16151591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics.
    Chen M; Wu C; Song D; Li K
    Phys Chem Chem Phys; 2010 Jan; 12(2):406-15. PubMed ID: 20023818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting Smooth Muscle Cell Proliferation via Immobilization of Heparin/Fibronectin Complexes on Titanium Surfaces.
    Li GC; Xu QF; Yang P
    Biomed Environ Sci; 2015 May; 28(5):378-82. PubMed ID: 26055566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RGD nanodomains grafting onto titanium surface.
    Forget G; Latxague L; Héroguez V; Labrugère C; Durrieu MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5107-10. PubMed ID: 18003155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs.
    Germanier Y; Tosatti S; Broggini N; Textor M; Buser D
    Clin Oral Implants Res; 2006 Jun; 17(3):251-7. PubMed ID: 16672019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of RGD peptide on HA coating through a chemical bonding approach.
    Yang C; Cheng K; Weng W; Yang C
    J Mater Sci Mater Med; 2009 Nov; 20(11):2349-52. PubMed ID: 19521750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of linking arm hydrophilic/hydrophobic nature, length and end-group on the conformation and the RGD accessibility of surface-immobilized fibronectin.
    Vanslambrouck S; Chevallier P; Guay-Bégin AA; Laroche G
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110335. PubMed ID: 31761211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical surface modifications to titanium implants using the tresyl chlorideactivated method.
    Hayakawa T
    Dent Mater J; 2015; 34(6):725-39. PubMed ID: 26632221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization.
    Zhou L; Lin Z; Ding J; Huang W; Chen J; Wu D
    Colloids Surf B Biointerfaces; 2017 Dec; 160():581-588. PubMed ID: 29028606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.
    Song DP; Chen MJ; Liang YC; Bai QS; Chen JX; Zheng XF
    Acta Biomater; 2010 Feb; 6(2):684-94. PubMed ID: 19643209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.