These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 21101)
1. Decay of a specific NADP(H)-binding protein during aging of normal and glucose 6-phosphate dehydrogenase-deficient erythrocytes. De Flora A; Morelli A; Benatti U; Frascio M; Gaetani GF FEBS Lett; 1977 Oct; 82(2):223-6. PubMed ID: 21101 [No Abstract] [Full Text] [Related]
2. Radioimmunoassay and chemical properties of glucose 6-phosphate dehydrogenase and of a specific NADP(H)-binding protein (FX) from human erythrocytes. de Flora A; Morelli A; Frascio M; Corte G; Curti B; Galliano M; Gozzer C; Minchiotti L; Mareni C; Gaetani G Biochim Biophys Acta; 1977 Nov; 500(1):109-23. PubMed ID: 72567 [No Abstract] [Full Text] [Related]
3. Effect of haemolysis on the hexose monophosphate pathway in normal and in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Galiano S; Mareni C; Gaetani GF Biochim Biophys Acta; 1978 Jan; 501(1):1-9. PubMed ID: 23153 [TBL] [Abstract][Full Text] [Related]
4. The effect of pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient subjects. Yeh GC; Roth EF; Phang JM; Harris SC; Nagel RL; Rinaldi A J Biol Chem; 1984 May; 259(9):5454-8. PubMed ID: 6201483 [TBL] [Abstract][Full Text] [Related]
5. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation. Mareni C; Gaetani GF Biochim Biophys Acta; 1976 Jun; 430(3):395-8. PubMed ID: 7294 [TBL] [Abstract][Full Text] [Related]
6. Letter: Glucose-6-phosphate deficiency and inhibition by NADPH: a self-contradictory argument. Kirkman HN; Gaetani GD Science; 1975 Oct; 190(4210):171-2. PubMed ID: 241122 [No Abstract] [Full Text] [Related]
7. [Resistance of erythrocytes of different ages to oxidants in persons with hereditary glucosephosphate dehydrogenase deficiency]. Ermakova TA; Tokarev IuN; Kolodeĭ SV; Kulagin MN Gematol Transfuziol; 1989 Mar; 34(3):45-8. PubMed ID: 2721908 [No Abstract] [Full Text] [Related]
8. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency. Morelli A; Benatti U; Gaetani GF; De Flora A Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1979-83. PubMed ID: 273924 [TBL] [Abstract][Full Text] [Related]
9. Red cell NADP+ and NADPH in glucose-6-phosphate dehydrogenase deficiency. Kirkman HN; Gaetani GD; Clemons EH; Mareni C J Clin Invest; 1975 Apr; 55(4):875-8. PubMed ID: 235564 [TBL] [Abstract][Full Text] [Related]
10. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Canepa L; Ferraris AM; Miglino M; Gaetani GF Biochim Biophys Acta; 1991 May; 1074(1):101-4. PubMed ID: 2043659 [TBL] [Abstract][Full Text] [Related]
11. Variations of adenine nucleotide levels in normal and pathologic human erythrocytes exposed to oxidative stress. Bozzi A; Martini F; Leonardi F; Strom R Biochem Mol Biol Int; 1994 Jan; 32(1):95-103. PubMed ID: 8012294 [TBL] [Abstract][Full Text] [Related]
12. NADP-binding proteins causing reduced availability and sigmoid release of NADP+ in human erythrocytes. Kirkman HN; Gaetani GF; Clemons EH J Biol Chem; 1986 Mar; 261(9):4039-45. PubMed ID: 3949801 [TBL] [Abstract][Full Text] [Related]
13. Glucose-6-phosphate dehydrogenase in vitro correlated with in vivo activity and reticulocytosis. Brewster MA; Quittner H; Moriarity M Ann Clin Lab Sci; 1977; 7(4):325-8. PubMed ID: 20030 [TBL] [Abstract][Full Text] [Related]
14. Role of NADPH and the NADPH-dependent methemoglobin reductase in the hydroxylase activity of human erythrocytes. Blisard KS; Mieyal JJ Arch Biochem Biophys; 1981 Sep; 210(2):762-9. PubMed ID: 6795993 [No Abstract] [Full Text] [Related]
15. Membrane lipid components of normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes of asymptomatic and favic subjects. De Flora A; Morelli A; Benatti U; Pontremoli S; Melloni E; Salamino F; Sparatore B; Michetti M; Meloni T Acta Biol Med Ger; 1981; 40(4-5):563-70. PubMed ID: 7315104 [No Abstract] [Full Text] [Related]
16. [Diagnosis of glucose-6-phosphate dehydrogenase deficiency by activation of the erythrocytic redox systems]. Schueer JH Pediatria (Bucur); 1969; 18(4):331-7. PubMed ID: 4390997 [No Abstract] [Full Text] [Related]
17. Human erythrocyte glucose 6-phosphate dehydrogenase: structure and function in normal and mutant subjects. Luzzatto L; Testa U Curr Top Hematol; 1978; 1():1-70. PubMed ID: 45418 [No Abstract] [Full Text] [Related]
18. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Gaetani GD; Parker JC; Kirkman HN Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443 [TBL] [Abstract][Full Text] [Related]
19. Redox and energetic state of red blood cells in G6PD deficiency, heterozygous beta-thalassemia and the combination of both. Magnani M; Stocchi V; Canestrari F; Cucchiarini L; Stocchi O; Coppa GV; Felici L; Giorgi PL; Fornaini G Acta Haematol; 1986; 75(4):211-4. PubMed ID: 3096052 [TBL] [Abstract][Full Text] [Related]
20. Isolation and partial charaterization of an NADP- and NADPH- binding protein from human erythrocytes. Morelli A; De Flora A Arch Biochem Biophys; 1977 Mar; 179(2):698-705. PubMed ID: 15521 [No Abstract] [Full Text] [Related] [Next] [New Search]