These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 2110196)
41. Ultrastructural investigation of substance P-, leucine-enkephalin- and 5-hydroxytryptamine-like immunoreactive terminals in the area of cremaster motoneurons of the male rat. Wang BR; Senba E; Tohyama M Neuroscience; 1989; 28(3):711-23. PubMed ID: 2469034 [TBL] [Abstract][Full Text] [Related]
42. Direct synaptic projections to esophageal motoneurons in the nucleus ambiguus from the nucleus of the solitary tract of the rat. Hayakawa T; Zheng JQ; Yajima Y J Comp Neurol; 1997 Apr; 381(1):18-30. PubMed ID: 9087416 [TBL] [Abstract][Full Text] [Related]
43. Subsurface cisterns in alpha-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin32. Yamamoto T; Hertzberg EL; Nagy JI Synapse; 1991 Jun; 8(2):119-36. PubMed ID: 1652794 [TBL] [Abstract][Full Text] [Related]
45. Effects of vagotomy on neurotransmitter receptors in the rat dorsal vagal complex. Manaker S; Zucchi PC Neuroscience; 1993 Jan; 52(2):427-41. PubMed ID: 8383819 [TBL] [Abstract][Full Text] [Related]
46. Three distinct thyrotropin-releasing hormone-immunoreactive axonal systems project in the median eminence-pituitary complex of the frog Rana ridibunda. Immunocytochemical evidence for co-localization of thyrotropin-releasing hormone and mesotocin in fibers innervating pars intermedia cells. Lamacz M; Hindelang C; Tonon MC; Vaudry H; Stoeckel ME Neuroscience; 1989; 32(2):451-62. PubMed ID: 2511504 [TBL] [Abstract][Full Text] [Related]
47. TRH regulation of tracheal tension through vagal preganglionic motoneurons. Iwase M; Shioda S; Nakai Y; Iwatsuki K; Homma I Brain Res Bull; 1992 Dec; 29(6):821-9. PubMed ID: 1282078 [TBL] [Abstract][Full Text] [Related]
48. Ultrastructural evidence for serotonin-immunoreactive terminals contacting phrenic motoneurons in the cat. Holtman JR; Vascik DS; Maley BE Exp Neurol; 1990 Sep; 109(3):269-72. PubMed ID: 2209771 [TBL] [Abstract][Full Text] [Related]
49. Glycine-containing terminals in the rat dorsal vagal complex. Cassell MD; Roberts L; Talman WT Neuroscience; 1992 Oct; 50(4):907-20. PubMed ID: 1333062 [TBL] [Abstract][Full Text] [Related]
50. Vagal regulation of gastric function involves thyrotropin-releasing hormone in the medullary raphe nuclei and dorsal vagal complex. Taché Y; Yang H; Yoneda M Digestion; 1993; 54(2):65-72. PubMed ID: 8319841 [TBL] [Abstract][Full Text] [Related]
51. Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Yang H; Yuan PQ; Wang L; Taché Y Neuroscience; 2000; 95(3):773-9. PubMed ID: 10670444 [TBL] [Abstract][Full Text] [Related]
52. Synaptic interactions of retrogradely labeled hypoglossal motoneurons with substance P-like immunoreactive nerve terminals in the cat: a dual-labeling electron microscopic study. Gatti PJ; Coleman WC; Shirahata M; Johnson TA; Massari VJ Exp Brain Res; 1996 Jul; 110(2):175-82. PubMed ID: 8836682 [TBL] [Abstract][Full Text] [Related]
53. A quantitative ultrastructural analysis of neurotensin-like immunoreactive terminals in the midbrain periaqueductal gray: analysis of their possible relationship to periaqueductal gray-raphe magnus projection neurons. Williams FG; Beitz AJ Neuroscience; 1989; 29(1):121-34. PubMed ID: 2710343 [TBL] [Abstract][Full Text] [Related]
54. Cold exposure elevates thyrotropin-releasing hormone gene expression in medullary raphe nuclei: relationship with vagally mediated gastric erosions. Yang H; Wu SV; Ishikawa T; Taché Y Neuroscience; 1994 Aug; 61(3):655-63. PubMed ID: 7969936 [TBL] [Abstract][Full Text] [Related]
55. Substance P afferent terminals innervate vagal preganglionic neurons projecting to the trachea of the ferret. Massari VJ; Haxhiu MA Auton Neurosci; 2002 Mar; 96(2):103-12. PubMed ID: 11958475 [TBL] [Abstract][Full Text] [Related]
56. TRH: immunocytochemical distribution in vagal nuclei of the cat and physiological effects of microinjection. Hornby PJ; Rossiter CD; Pineo SV; Norman WP; Friedman EK; Benjamin S; Gillis RA Am J Physiol; 1989 Sep; 257(3 Pt 1):G454-62. PubMed ID: 2506764 [TBL] [Abstract][Full Text] [Related]
57. Ultrastructural analysis of the innervation of TRH-immunoreactive neuronal elements located in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. Kiss J; Halász B Brain Res; 1990 Nov; 532(1-2):107-14. PubMed ID: 2126484 [TBL] [Abstract][Full Text] [Related]
58. Enkephalin-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal innervation of the ventrolateral dendritic bundle in the cat sacral spinal cord: an ultrastructural study. Ramírez-León V; Hökfelt T; Cuello AC; Visser TJ; Ulfhake B J Chem Neuroanat; 1994 Oct; 7(4):203-15. PubMed ID: 7532948 [TBL] [Abstract][Full Text] [Related]
59. Thyrotropin-releasing-hormone-immunoreactive innervation of thyrotropin-releasing-hormone-tuberoinfundibular neurons in rat hypothalamus: anatomical basis to suggest ultrashort feedback regulation. Toni R; Jackson IM; Lechan RM Neuroendocrinology; 1990 Nov; 52(5):422-8. PubMed ID: 1704108 [TBL] [Abstract][Full Text] [Related]
60. Erythromycin inhibited glycinergic inputs to gastric vagal motoneurons in brainstem slices of newborn rats. Liu H; Qiu D; Zhou X; Niu W; Qin X; Cai Y; Wang J; Chen Y Neurogastroenterol Motil; 2010 Nov; 22(11):1232-9. PubMed ID: 20731779 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]