These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21102468)

  • 1. Length scaling of carbon nanotube transistors.
    Franklin AD; Chen Z
    Nat Nanotechnol; 2010 Dec; 5(12):858-62. PubMed ID: 21102468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-10 nm carbon nanotube transistor.
    Franklin AD; Luisier M; Han SJ; Tulevski G; Breslin CM; Gignac L; Lundstrom MS; Haensch W
    Nano Lett; 2012 Feb; 12(2):758-62. PubMed ID: 22260387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors.
    Cao Q; Han SJ; Penumatcha AV; Frank MM; Tulevski GS; Tersoff J; Haensch WE
    ACS Nano; 2015 Feb; 9(2):1936-44. PubMed ID: 25652208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors.
    Franklin AD; Farmer DB; Haensch W
    ACS Nano; 2014 Jul; 8(7):7333-9. PubMed ID: 24999536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance.
    Cao Q; Han SJ; Tersoff J; Franklin AD; Zhu Y; Zhang Z; Tulevski GS; Tang J; Haensch W
    Science; 2015 Oct; 350(6256):68-72. PubMed ID: 26430114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube circuit integration up to sub-20 nm channel lengths.
    Shulaker MM; Van Rethy J; Wu TF; Liyanage LS; Wei H; Li Z; Pop E; Gielen G; Wong HS; Mitra S
    ACS Nano; 2014 Apr; 8(4):3434-43. PubMed ID: 24654597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.
    Miao J; Zhang S; Cai L; Scherr M; Wang C
    ACS Nano; 2015 Sep; 9(9):9236-43. PubMed ID: 26277886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple functionality in nanotube transistors.
    Léonard F; Tersoff J
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):258302. PubMed ID: 12097134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed.
    Hu Y; Xiang J; Liang G; Yan H; Lieber CM
    Nano Lett; 2008 Mar; 8(3):925-30. PubMed ID: 18251518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrashort vertical-channel MoS
    Liu L; Chen Y; Chen L; Xie B; Li G; Kong L; Tao Q; Li Z; Yang X; Lu Z; Ma L; Lu D; Yang X; Liu Y
    Nat Commun; 2024 Jan; 15(1):165. PubMed ID: 38167517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reliable carbon nanotube transistors with patterned gates and molecular gate dielectric.
    Weitz RT; Zschieschang U; Forment-Aliaga A; Kälblein D; Burghard M; Kern K; Klauk H
    Nano Lett; 2009 Apr; 9(4):1335-40. PubMed ID: 19351189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors.
    Aïssa B; El Khakani MA
    Nanotechnology; 2009 Apr; 20(17):175203. PubMed ID: 19420587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.
    Tan ML; Lentaris G; Amaratunga Aj G
    Nanoscale Res Lett; 2012 Aug; 7(1):467. PubMed ID: 22901374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-channel transistors constructed with solution-processed carbon nanotubes.
    Choi SJ; Bennett P; Takei K; Wang C; Lo CC; Javey A; Bokor J
    ACS Nano; 2013 Jan; 7(1):798-803. PubMed ID: 23259742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Carbon Nanotube Thin-Film Transistor Technology.
    Peng LM
    ACS Nano; 2023 Nov; 17(22):22156-22166. PubMed ID: 37955303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm.
    Xu H; Wang S; Zhang Z; Peng LM
    Nano Lett; 2014 Sep; 14(9):5382-9. PubMed ID: 25115287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of device scaling on the electrical properties of MoS
    Arutchelvan G; Smets Q; Verreck D; Ahmed Z; Gaur A; Sutar S; Jussot J; Groven B; Heyns M; Lin D; Asselberghs I; Radu I
    Sci Rep; 2021 Mar; 11(1):6610. PubMed ID: 33758215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.