These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21102468)

  • 21. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography.
    Javey A; Qi P; Wang Q; Dai H
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13408-10. PubMed ID: 15347810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.
    Otsuka K; Inoue T; Maeda E; Kometani R; Chiashi S; Maruyama S
    ACS Nano; 2017 Nov; 11(11):11497-11504. PubMed ID: 29112380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of carbon nanotube field effect transistors performance based on changes in gate parameters.
    Shirazi SG; Mirzakuchaki S
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10424-8. PubMed ID: 22408919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors.
    Liu Y; Guo J; Wu Y; Zhu E; Weiss NO; He Q; Wu H; Cheng HC; Xu Y; Shakir I; Huang Y; Duan X
    Nano Lett; 2016 Oct; 16(10):6337-6342. PubMed ID: 27579678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaling down contact length in complementary carbon nanotube field-effect transistors.
    Liu L; Qiu C; Zhong D; Si J; Zhang Z; Peng LM
    Nanoscale; 2017 Jul; 9(27):9615-9621. PubMed ID: 28665428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gate Quantum Capacitance Effects in Nanoscale Transistors.
    Desai SB; Fahad HM; Lundberg T; Pitner G; Kim H; Chrzan D; Wong HP; Javey A
    Nano Lett; 2019 Oct; 19(10):7130-7137. PubMed ID: 31532995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length.
    Cao X; Wu F; Lau C; Liu Y; Liu Q; Zhou C
    ACS Nano; 2017 Feb; 11(2):2008-2014. PubMed ID: 28195705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MoS2 transistors with 1-nanometer gate lengths.
    Desai SB; Madhvapathy SR; Sachid AB; Llinas JP; Wang Q; Ahn GH; Pitner G; Kim MJ; Bokor J; Hu C; Wong HP; Javey A
    Science; 2016 Oct; 354(6308):99-102. PubMed ID: 27846499
    [TBL] [