These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21102943)

  • 1. Realization and optimization of planar refracting microlenses by Ag-Na ion-exchange techniques.
    Bähr J; Brenner KH
    Appl Opt; 1996 Sep; 35(25):5102-7. PubMed ID: 21102943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Index-distributed planar microlenses for three-dimensional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates.
    Bähr J; Brenner KH; Sinzinger S; Spick T; Testorf M
    Appl Opt; 1994 Sep; 33(25):5919-24. PubMed ID: 20935998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of 2-D ion exchange in glass: optimization of microlens arrays.
    Cantor AJ; Leil MM; Hobbs RH
    Appl Opt; 1991 Jul; 30(19):2704-13. PubMed ID: 20700265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of refractive micro-optical elements with differential-pair optical-thyristor arrays.
    Passon C; Moisel J; McArdle N; Eckert W; Brenner KH; Kuijk M; Heremans P
    Appl Opt; 1996 Mar; 35(8):1205-11. PubMed ID: 21085233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ion-exchanged planar microlenses by ray tracing.
    Zhu X; Iga K
    Appl Opt; 1988 Feb; 27(3):468-71. PubMed ID: 20523623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup.
    Mrozek P
    Appl Opt; 2011 Aug; 50(22):4499-508. PubMed ID: 21833126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process optimization of buried Ag(+)-Na(+) ion-exchanged waveguides: theory and experiment.
    Ramaswamy RV; Cheng HC; Srivastava R
    Appl Opt; 1988 May; 27(9):1814-9. PubMed ID: 20531659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for measuring the mode-index ratio of two regions in a planar waveguide.
    Agapiou GS; Verber CM
    Appl Opt; 1992 Mar; 31(9):1257-60. PubMed ID: 20720752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of refractive index profiles of Ag+ -Na+ ion-exchange multimode strip waveguides by variable wavefront shear double-refracting interferometry microinterferometry.
    Mrozek P; Mrozek E; Lukaszewicz T
    Appl Opt; 2006 Feb; 45(4):756-63. PubMed ID: 16485688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of multilens micro-optical systems with large numerical aperture by stacking of microlenses.
    Klug R; Brenner KH
    Appl Opt; 1999 Dec; 38(34):7002-8. PubMed ID: 18324244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique.
    Zang Z; Tang X; Liu X; Lei X; Chen W
    Appl Opt; 2014 Nov; 53(33):7868-71. PubMed ID: 25607860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refractive-index measurement of gradient-index microlenses by diffraction tomography.
    Singer W; Dobler B; Schreiber H; Brenner KH; Messerschmidt B
    Appl Opt; 1996 May; 35(13):2167-71. PubMed ID: 21085345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of microlens properties in the presence of high spherical aberration.
    Testorf M; Sinzinger S
    Appl Opt; 1995 Oct; 34(28):6431-7. PubMed ID: 21060490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-index microlenses: numerical investigation of different spherical index profiles with the wave propagation method.
    Singer W; Testorf M; Brenner KH
    Appl Opt; 1995 May; 34(13):2165-71. PubMed ID: 21037762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical considerations for anticipating of function analysis on a gradient index-lens fabrication through double ion-exchange process.
    Zakeri B; Sabatyan A
    Appl Opt; 2012 Sep; 51(26):6290-4. PubMed ID: 22968265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient-index rod lens made by a double ion-exchange process.
    Ohmi S; Sakai H; Asahara Y; Nakayama S; Yoneda Y; Izumitani T
    Appl Opt; 1988 Feb; 27(3):496-9. PubMed ID: 20523629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlenses with defined contour shapes.
    Cadarso VJ; Perera-Núñez J; Jacot-Descombes L; Pfeiffer K; Ostrzinski U; Voigt A; Llobera A; Grützer G; Brugger J
    Opt Express; 2011 Sep; 19(19):18665-70. PubMed ID: 21935235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and modeling of planar surface and buried glass waveguides made by field-assisted K(+) ion exchange.
    Noutsios PG; Yip GL
    Appl Opt; 1992 Sep; 31(25):5283-91. PubMed ID: 20733707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.