BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 21103382)

  • 1. A complete set of nascent transcription rates for yeast genes.
    Pelechano V; Chávez S; Pérez-Ortín JE
    PLoS One; 2010 Nov; 5(11):e15442. PubMed ID: 21103382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome.
    Hong SW; Hong SM; Yoo JW; Lee YC; Kim S; Lis JT; Lee DK
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14276-80. PubMed ID: 19666497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast.
    García-Martínez J; Ayala G; Pelechano V; Chávez S; Herrero E; Pérez-Ortín JE
    Transcription; 2012; 3(1):39-44. PubMed ID: 22456320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions.
    Fischer J; Song YS; Yosef N; di Iulio J; Churchman LS; Choder M
    J Biol Chem; 2020 Aug; 295(33):11435-11454. PubMed ID: 32518159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale chromatin binding dynamics of RNA Polymerase II general transcription machinery components.
    Kupkova K; Shetty SJ; Hoffman EA; Bekiranov S; Auble DT
    EMBO J; 2024 May; 43(9):1799-1821. PubMed ID: 38565951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast.
    Trotta E
    J Biol Chem; 2019 Aug; 294(33):12349-12358. PubMed ID: 31235518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of single RNA polymerase processing through a single endogenous gene in a living yeast cell.
    Treutlein B; Michaelis J
    Angew Chem Int Ed Engl; 2011 Oct; 50(42):9788-90. PubMed ID: 21793146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.
    Kaplan CD; Holland MJ; Winston F
    J Biol Chem; 2005 Jan; 280(2):913-22. PubMed ID: 15531585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway.
    Pulido V; Rodríguez-Peña JM; Alonso G; Sanz AB; Arroyo J; García R
    J Mol Biol; 2024 May; 436(10):168570. PubMed ID: 38604529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast.
    Kim TS; Liu CL; Yassour M; Holik J; Friedman N; Buratowski S; Rando OJ
    Genome Biol; 2010; 11(7):R75. PubMed ID: 20637075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled evolution of transcription and mRNA degradation.
    Dori-Bachash M; Shema E; Tirosh I
    PLoS Biol; 2011 Jul; 9(7):e1001106. PubMed ID: 21811398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II.
    Bhalla P; Vernekar DV; Gilquin B; Couté Y; Bhargava P
    Gene; 2019 Jun; 702():205-214. PubMed ID: 30593915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis.
    Haimovich G; Medina DA; Causse SZ; Garber M; Millán-Zambrano G; Barkai O; Chávez S; Pérez-Ortín JE; Darzacq X; Choder M
    Cell; 2013 May; 153(5):1000-11. PubMed ID: 23706738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription.
    Calvo O; Manley JL
    EMBO J; 2005 Mar; 24(5):1009-20. PubMed ID: 15692559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms.
    García-Martínez J; Aranda A; Pérez-Ortín JE
    Mol Cell; 2004 Jul; 15(2):303-13. PubMed ID: 15260981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.
    Dronamraju R; Hepperla AJ; Shibata Y; Adams AT; Magnuson T; Davis IJ; Strahl BD
    Mol Cell; 2018 Jun; 70(6):1054-1066.e4. PubMed ID: 29932900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II.
    Shalem O; Groisman B; Choder M; Dahan O; Pilpel Y
    PLoS Genet; 2011 Sep; 7(9):e1002273. PubMed ID: 21931566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotin-Genomic Run-On (Bio-GRO): A High-Resolution Method for the Analysis of Nascent Transcription in Yeast.
    Jordán-Pla A; Miguel A; Serna E; Pelechano V; Pérez-Ortín JE
    Methods Mol Biol; 2016; 1361():125-39. PubMed ID: 26483020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.