These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21103458)
1. Fast microfluidic temperature control for high resolution live cell imaging. Velve Casquillas G; Fu C; Le Berre M; Cramer J; Meance S; Plecis A; Baigl D; Greffet JJ; Chen Y; Piel M; Tran PT Lab Chip; 2011 Feb; 11(3):484-9. PubMed ID: 21103458 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of reversibly adhesive fluidic devices using magnetism. Rafat M; Raad DR; Rowat AC; Auguste DT Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760 [TBL] [Abstract][Full Text] [Related]
3. A fast microfluidic temperature control device for studying microtubule dynamics in fission yeast. Velve-Casquillas G; Costa J; Carlier-Grynkorn F; Mayeux A; Tran PT Methods Cell Biol; 2010; 97():185-201. PubMed ID: 20719272 [TBL] [Abstract][Full Text] [Related]
4. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370 [TBL] [Abstract][Full Text] [Related]
6. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips. Yu L; Huang H; Dong X; Wu D; Qin J; Lin B Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590 [TBL] [Abstract][Full Text] [Related]
8. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. Wong I; Atsumi S; Huang WC; Wu TY; Hanai T; Lam ML; Tang P; Yang J; Liao JC; Ho CM Lab Chip; 2010 Oct; 10(20):2710-9. PubMed ID: 20664845 [TBL] [Abstract][Full Text] [Related]
9. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays. Pla-Roca M; Juncker D Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630 [TBL] [Abstract][Full Text] [Related]
10. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging. Robinson T; Schaerli Y; Wootton R; Hollfelder F; Dunsby C; Baldwin G; Neil M; French P; deMello A Lab Chip; 2009 Dec; 9(23):3437-41. PubMed ID: 19904413 [TBL] [Abstract][Full Text] [Related]
12. Self-loading and cell culture in one layer microfluidic devices. Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238 [TBL] [Abstract][Full Text] [Related]
13. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices. Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL J Vis Exp; 2007; (9):410. PubMed ID: 18989450 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lee KS; Boccazzi P; Sinskey AJ; Ram RJ Lab Chip; 2011 May; 11(10):1730-9. PubMed ID: 21445442 [TBL] [Abstract][Full Text] [Related]
15. Lipid-coated microdroplet array for in vitro protein synthesis. Osaki T; Yoshizawa S; Kawano R; Sasaki H; Takeuchi S Anal Chem; 2011 Apr; 83(8):3186-91. PubMed ID: 21417316 [TBL] [Abstract][Full Text] [Related]
16. PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Yamamoto T; Fujii T; Nojima T Lab Chip; 2002 Nov; 2(4):197-202. PubMed ID: 15100810 [TBL] [Abstract][Full Text] [Related]
17. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
19. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
20. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]