These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 21103486)
21. Structures and properties of 1,8,15,22-tetrasubstituted phthalocyaninato-lead complexes: the substitutional effect study based on density functional theory calculations. Zhang Y; Zhang X; Liu Z; Bian Y; Jiang J J Phys Chem A; 2005 Jul; 109(28):6363-70. PubMed ID: 16833979 [TBL] [Abstract][Full Text] [Related]
22. Theoretical study of sensitizer candidates for dye-sensitized solar cells: peripheral substituted dizinc pyrazinoporphyrazine-phthalocyanine complexes. Zarate X; Schott E; Gomez T; Arratia-Pérez R J Phys Chem A; 2013 Jan; 117(2):430-8. PubMed ID: 23273172 [TBL] [Abstract][Full Text] [Related]
23. Phthalocyanine-C60 fused conjugates exhibiting molecular orbital interactions depending on the solvent polarity. Fukuda T; Hashimoto N; Araki Y; El-Khouly ME; Ito O; Kobayashi N Chem Asian J; 2009 Nov; 4(11):1678-86. PubMed ID: 19866461 [TBL] [Abstract][Full Text] [Related]
24. Iodinated Al(III)-based phthalocyanines are promising sensitizers for dye-sensitized solar cells; a theoretical comparison between Zn(II), Mg(II), and Al(III)-based phthalocyanine sensitizers. Yang LN; Sun ZZ; Chen SL; Li ZS Chemphyschem; 2014 Feb; 15(3):458-66. PubMed ID: 24470262 [TBL] [Abstract][Full Text] [Related]
25. Spectroscopic and computational study of β-ethynylphenylene substituted zinc and free-base porphyrins. Earles JC; Gordon KC; Stephenson AW; Partridge AC; Officer DL Phys Chem Chem Phys; 2011 Jan; 13(4):1597-605. PubMed ID: 21125110 [TBL] [Abstract][Full Text] [Related]
26. Substituent effects on zinc phthalocyanine derivatives: a theoretical calculation and screening of sensitizer candidates for dye-sensitized solar cells. Yang L; Guo L; Chen Q; Sun H; Yan H; Zeng Q; Zhang X; Pan X; Dai S J Mol Graph Model; 2012 Sep; 38():82-9. PubMed ID: 23085158 [TBL] [Abstract][Full Text] [Related]
27. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Balanay MP; Kim DH Phys Chem Chem Phys; 2008 Sep; 10(33):5121-7. PubMed ID: 18701961 [TBL] [Abstract][Full Text] [Related]
28. Orbital-resolved partial charge transfer from the methoxy groups of substituted pyrenes in complexes with tetracyanoquinodimethane--a NEXAFS study. Medjanik K; Chercka D; Nagel P; Merz M; Schuppler S; Baumgarten M; Müllen K; Nepijko SA; Elmers HJ; Schönhense G; Jeschke HO; Valenti R J Am Chem Soc; 2012 Mar; 134(10):4694-9. PubMed ID: 22321020 [TBL] [Abstract][Full Text] [Related]
29. Molecular design rule of phthalocyanine dyes for highly efficient near-IR performance in dye-sensitized solar cells. Kimura M; Nomoto H; Suzuki H; Ikeuchi T; Matsuzaki H; Murakami TN; Furube A; Masaki N; Griffith MJ; Mori S Chemistry; 2013 Jun; 19(23):7496-502. PubMed ID: 23576330 [TBL] [Abstract][Full Text] [Related]
30. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. Wang Q; Campbell WM; Bonfantani EE; Jolley KW; Officer DL; Walsh PJ; Gordon K; Humphry-Baker R; Nazeeruddin MK; Grätzel M J Phys Chem B; 2005 Aug; 109(32):15397-409. PubMed ID: 16852953 [TBL] [Abstract][Full Text] [Related]
31. Supramolecular zinc phthalocyanine-imidazolyl perylenediimide dyad and triad: synthesis, complexation, and photophysical studies. Céspedes-Guirao FJ; Ohkubo K; Fukuzumi S; Fernández-Lázaro F; Sastre-Santos A Chem Asian J; 2011 Nov; 6(11):3110-21. PubMed ID: 21976363 [TBL] [Abstract][Full Text] [Related]
32. Theoretical design and screening of panchromatic phthalocyanine sensitizers derived from TT1 for dye-sensitized solar cells. Yang L; Guo L; Chen Q; Sun H; Liu J; Zhang X; Pan X; Dai S J Mol Graph Model; 2012 Apr; 34():1-9. PubMed ID: 22306409 [TBL] [Abstract][Full Text] [Related]
33. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells. Yu L; Shi W; Lin L; Liu Y; Li R; Peng T; Li X Dalton Trans; 2014 Jun; 43(22):8421-30. PubMed ID: 24740460 [TBL] [Abstract][Full Text] [Related]
34. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. Wu X; An W; Zeng XC J Am Chem Soc; 2006 Sep; 128(36):12001-6. PubMed ID: 16953642 [TBL] [Abstract][Full Text] [Related]
35. Intramolecular electronic communication in a dimethylaminoazobenzene-fullerene C60 dyad: an experimental and TD-DFT study. Kumar KS; Patnaik A J Comput Chem; 2010 Apr; 31(6):1182-94. PubMed ID: 19827143 [TBL] [Abstract][Full Text] [Related]
36. Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations. Zhong A; Zhang Y; Bian Y J Mol Graph Model; 2010 Nov; 29(3):470-80. PubMed ID: 20951071 [TBL] [Abstract][Full Text] [Related]
37. Effects of substituents on synthetic analogs of chlorophylls. Part 2: Redox properties, optical spectra and electronic structure. Kee HL; Kirmaier C; Tang Q; Diers JR; Muthiah C; Taniguchi M; Laha JK; Ptaszek M; Lindsey JS; Bocian DF; Holten D Photochem Photobiol; 2007; 83(5):1125-43. PubMed ID: 17880507 [TBL] [Abstract][Full Text] [Related]
38. Sandwich-type (phthalocyaninato)(porphyrinato) europium triple-decker nanotubes. Effects of the phthalocyanine peripheral substituents on the molecular packing. Lu J; Ma P; Zhang X; Jiang J Dalton Trans; 2011 Dec; 40(48):12895-900. PubMed ID: 22024760 [TBL] [Abstract][Full Text] [Related]
39. A theoretical, spectroscopic, and photophysical study of 2,7-carbazolenevinylene-based conjugated derivatives. Belletête M; Morin JF; Leclerc M; Durocher G J Phys Chem A; 2005 Aug; 109(31):6953-9. PubMed ID: 16834054 [TBL] [Abstract][Full Text] [Related]
40. Spectroscopy and electronic structure of electron deficient zinc phthalocyanines. Keizer SP; Mack J; Bench BA; Gorun SM; Stillman MJ J Am Chem Soc; 2003 Jun; 125(23):7067-85. PubMed ID: 12783561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]