These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 21103525)
1. Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). Qu WG; Deng B; Zhong SL; Shi HY; Wang SS; Xu AW Chem Commun (Camb); 2011 Jan; 47(4):1237-9. PubMed ID: 21103525 [TBL] [Abstract][Full Text] [Related]
2. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots. Zou WS; Sheng D; Ge X; Qiao JQ; Lian HZ Anal Chem; 2011 Jan; 83(1):30-7. PubMed ID: 21117685 [TBL] [Abstract][Full Text] [Related]
3. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Liu GL; Long YT; Choi Y; Kang T; Lee LP Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109 [TBL] [Abstract][Full Text] [Related]
4. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285 [TBL] [Abstract][Full Text] [Related]
5. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Choi Y; Park Y; Kang T; Lee LP Nat Nanotechnol; 2009 Nov; 4(11):742-6. PubMed ID: 19893511 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Dasary SS; Singh AK; Senapati D; Yu H; Ray PC J Am Chem Soc; 2009 Sep; 131(38):13806-12. PubMed ID: 19736926 [TBL] [Abstract][Full Text] [Related]
7. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Goldman ER; Medintz IL; Whitley JL; Hayhurst A; Clapp AR; Uyeda HT; Deschamps JR; Lassman ME; Mattoussi H J Am Chem Soc; 2005 May; 127(18):6744-51. PubMed ID: 15869297 [TBL] [Abstract][Full Text] [Related]
8. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer. Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058 [TBL] [Abstract][Full Text] [Related]
10. A reversible dual-response fluorescence switch for the detection of multiple analytes. Geng J; Liu P; Liu B; Guan G; Zhang Z; Han MY Chemistry; 2010 Mar; 16(12):3720-7. PubMed ID: 20151433 [TBL] [Abstract][Full Text] [Related]
11. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Wang J; Liu G; Wu H; Lin Y Anal Chim Acta; 2008 Mar; 610(1):112-8. PubMed ID: 18267147 [TBL] [Abstract][Full Text] [Related]
12. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related]
13. Selective visual detection of trace trinitrotoluene residues based on dual-color fluorescence of graphene oxide-nanocrystals hybrid probe. Zhang K; Yang L; Zhu H; Ma F; Zhang Z; Wang S Analyst; 2014 May; 139(10):2379-85. PubMed ID: 24667778 [TBL] [Abstract][Full Text] [Related]
14. Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene. Zhang HX; Hu JS; Yan CJ; Jiang L; Wan LJ Phys Chem Chem Phys; 2006 Aug; 8(30):3567-72. PubMed ID: 16871348 [TBL] [Abstract][Full Text] [Related]
15. Polymer-oligopeptide composite coating for selective detection of explosives in water. Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386 [TBL] [Abstract][Full Text] [Related]
16. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. Riskin M; Tel-Vered R; Lioubashevski O; Willner I J Am Chem Soc; 2009 Jun; 131(21):7368-78. PubMed ID: 19425579 [TBL] [Abstract][Full Text] [Related]
18. Multichannel homogeneous immunoassay for detection of 2,4,6-trinitrotoluene (TNT) using a microfabricated capillary array electrophoresis chip. Bromberg A; Mathies RA Electrophoresis; 2004 Jun; 25(12):1895-900. PubMed ID: 15213990 [TBL] [Abstract][Full Text] [Related]
19. Development of an oligo(ethylene glycol)-based SPR immunosensor for TNT detection. Mizuta Y; Onodera T; Singh P; Matsumoto K; Miura N; Toko K Biosens Bioelectron; 2008 Oct; 24(2):191-7. PubMed ID: 18499432 [TBL] [Abstract][Full Text] [Related]
20. Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene. Wang F; Wang W; Liu B; Wang Z; Zhang Z Talanta; 2009 Jul; 79(2):376-82. PubMed ID: 19559893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]