These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21103573)
1. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Bastien C; Cardin R; Veilleux E; Deblois C; Warren A; Laurion I J Environ Monit; 2011 Jan; 13(1):110-8. PubMed ID: 21103573 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Zamyadi A; McQuaid N; Prévost M; Dorner S J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157 [TBL] [Abstract][Full Text] [Related]
3. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617 [TBL] [Abstract][Full Text] [Related]
4. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Izydorczyk K; Tarczynska M; Jurczak T; Mrowczynski J; Zalewski M Environ Toxicol; 2005 Aug; 20(4):425-30. PubMed ID: 16007662 [TBL] [Abstract][Full Text] [Related]
5. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Hodges CM; Wood SA; Puddick J; McBride CG; Hamilton DP Environ Sci Pollut Res Int; 2018 Jan; 25(2):1079-1088. PubMed ID: 29079975 [TBL] [Abstract][Full Text] [Related]
6. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212 [TBL] [Abstract][Full Text] [Related]
7. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Brient L; Lengronne M; Bertrand E; Rolland D; Sipel A; Steinmann D; Baudin I; Legeas M; Le Rouzic B; Bormans M J Environ Monit; 2008 Feb; 10(2):248-55. PubMed ID: 18246219 [TBL] [Abstract][Full Text] [Related]
8. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
9. Measurement of cyanobacteria using in-vivo fluoroscopy -- effect of cyanobacterial species, pigments, and colonies. Chang DW; Hobson P; Burch M; Lin TF Water Res; 2012 Oct; 46(16):5037-48. PubMed ID: 22824675 [TBL] [Abstract][Full Text] [Related]
10. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Bowling LC; Zamyadi A; Henderson RK Water Res; 2016 Nov; 105():22-33. PubMed ID: 27592302 [TBL] [Abstract][Full Text] [Related]
11. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Thomson-Laing G; Puddick J; Wood SA Harmful Algae; 2020 Jul; 97():101869. PubMed ID: 32732055 [TBL] [Abstract][Full Text] [Related]
12. [Investigation of toxigenic microcystis and microcystin pollution in Huayuankou Conservation Pool of Yellow River]. Ban H; Ba Y; Cheng X; Wang G Wei Sheng Yan Jiu; 2007 Sep; 36(5):532-4. PubMed ID: 18095558 [TBL] [Abstract][Full Text] [Related]
13. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants. Zamyadi A; Dorner S; Ndong M; Ellis D; Bolduc A; Bastien C; Prévost M Environ Sci Process Impacts; 2014 Feb; 16(2):313-23. PubMed ID: 24429778 [TBL] [Abstract][Full Text] [Related]
14. Early warning method for cyanobacteria toxin, taste and odor problems by the evaluation of fluorescence signals. Moldaenke C; Fang Y; Yang F; Dahlhaus A Sci Total Environ; 2019 Jun; 667():681-690. PubMed ID: 30833266 [TBL] [Abstract][Full Text] [Related]
15. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Li L; Li L; Shi K; Li Z; Song K Sci Total Environ; 2012 Oct; 435-436():141-50. PubMed ID: 22846774 [TBL] [Abstract][Full Text] [Related]
16. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K; Li L; Tedesco LP; Li S; Clercin NA; Hall BE; Li Z; Shi K Sci Total Environ; 2012 Jun; 426():220-32. PubMed ID: 22521166 [TBL] [Abstract][Full Text] [Related]
17. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase. Rousso BZ; Bertone E; Stewart R; Aguiar A; Chuang A; Hamilton DP; Burford MA Water Res; 2022 Apr; 212():118127. PubMed ID: 35121420 [TBL] [Abstract][Full Text] [Related]
18. Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa. Ziegmann M; Abert M; Müller M; Frimmel FH Water Res; 2010 Jan; 44(1):195-204. PubMed ID: 19818983 [TBL] [Abstract][Full Text] [Related]
19. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Catherine A; Escoffier N; Belhocine A; Nasri AB; Hamlaoui S; Yéprémian C; Bernard C; Troussellier M Water Res; 2012 Apr; 46(6):1771-84. PubMed ID: 22280952 [TBL] [Abstract][Full Text] [Related]
20. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. Ahn CY; Joung SH; Yoon SK; Oh HM J Microbiol; 2007 Apr; 45(2):98-104. PubMed ID: 17483793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]